Rich Learning Tasks: Changing the Culture of the Mathematics Classroom Gary Flewelling

The Sense-Making Game

The sense-making game is about, using one's knowledge / experience in integrated, creative, and purposeful ways to conduct investigations, inquiries, and experiments and to solve problems and, in the process, coming to better understanding of things. An important role of schools is to graduate life-long sense-makers.

challenge finding out modeling justifying uncertainty conjecturing creating proving complexity testing connecting disproving ambiguity revising integrating arguing exploring gathering evidence monitoring demonstrating investigating generalizing organizing autonomy experimenting applying confirming understanding thinking transforming questioning communicating imagining reflecting making decisions interacting empowering clarifying planning patterns

People who play the sense-making game well find themselves involved such things as:

The Problem

Unfortunately, many students, teachers, parents, administrators, resource developers, curriculum and test developers, politicians, and business people see the sense making game and the math-classroom game as two different games. They have experienced both and they know that these two games are played according to different rules and that they are played for different purposes. There are a number of studies that support this assertion. In DeCorte, Verschaffel, and Greer (2000), for example, we read, 'studies suggest that it is not so much a cognitive deficit that causes pupil's abstention from sense-making when doing arithmetic word problems in a typical school setting. To the contrary they are acting in accordance with the "rules of the game" which they believe to regulate the interactive ritual in which they are involved.'

The Typical Math-Classroom Game

Unfortunately, people who play the math-classroom game frequently find themselves involved with such things as:

memorization	simplicity	routine procedures	unconnected things
quick recall	knowing	other's questions	being correct
certainty	automatic response	listening	rote learning

The Challenge

The challenge here is to turn the typical math classroom culture into a sense-making culture, to make the game played in the math classroom a sense-making game. Until we can do this, the best ideas, texts, tasks, tests, software, resources, technology and curriculum will continue to be under-utilized or un-utilized, under-implemented or un-implemented, under-valued or un-valued. Until we can do this,

mathematics will not be learned with deep understanding or used appropriately, powerfully, or creatively.

Sense-Making Culture	Traditional Classroom Culture	
1. convincing	1. unconvincing	
2. the discipline as a way of thinking	2. the discipline as a collection of procedures	
3. working with things that make sense	3. working with the inexplicable	
4. master	4. slave	
5. addresses student needs	5. ignores needs of student	
6. significant to learner	6. significance lost on learner	
7. known to be true	7. accepted as true	
8. student active	8. student passive	
9. validated by student	9. validated by teacher	
10. truth as constructed	10. truth as presented	
11. student-owned	11. teacher-owned	
12. wielded powerfully	12. wielded mechanically	
13. student as rule maker	13. student as rule taker	
14. described / explained in student language	14. described / explained in teacher language	
15. teacher as educator	15. teacher as inculcator	
16. remembered / re-constructible	16. often forgotten / not re-constructible	
17. grows into being	17. pops into existence	
18. considers student readiness	18. ignores student readiness	
19. experiential	19. non-experiential	
20. independence / interdependence	20. dependence	
21. developed by end of lesson	21. presented at beginning of lesson	
22. minimal reliance on memory aids	22. reliance on memory aids	
23. painting without numbers	23. painting by numbers	
24. learning via a problem solving process	24. impediment to problem solving	
25. connected	25. isolated	
26. thorough	26. superficial	
27. reading between the lines	27. reading their lines	
28. develop procedures	28. follow procedures	
29. a partnership	29. master-slave relationship	
30. enlivens the mind	30. deadens the mind	
31. enlivens the spirit	31. deadens the spirit	
32. sense of personal efficacy / confidence	32. subject anxious	
33. constructivist	33. destructivist	
34. bringing forth a world of significance with	34. bringing forth a world of insignificance at	
others	the insistence of others	

Comparison of a Sense-Making Culture with a Traditional Math-Classroom Culture

A Solution

Changing the typical math-classroom culture to a sense-making culture can be achieved by having students and their teacher work together and focus on, engage in, and experience *rich learning tasks*. They need to see what learning looks and feels like when they are so engaged. They need to experience the kind of interaction that is involved when they are so engaged. They need to experience, identify, develop, refine, value, and exercise the actions, habits, and attitudes that are important in sense-making.

What Makes a Learning Task Rich?

I define a learning task as 'rich' if the task gives the learner the opportunity to:

- use (and learn to use) their knowledge in an integrated, creative and purposeful fashion to conduct investigations, inquiries, and experiments and to solve problems and in so doing,

- acquire knowledge with understanding, and in the process,

- develop the attitudes and the habits of a life-long sense-maker

A Comparison of Rich Tasks with More Traditional Tasks

Rich Tasks	More Traditional Tasks	
1. prepare for success outside of school	1. prepare for success in school	
2. address relatively many learning outcomes	2. address relatively few learning outcomes	
3. address discipline and cross-curricular	3. address primarily learning outcomes of the	
learning outcomes	discipline	
4. provide an opportunity to use broad range	4. isolate on the use of relatively few skills	
of skills in an integrated, often creative		
fashion, to a purpose	5. are more artificial	
5. are authentic	6. are usually out of context	
6. are in context	7. encourage an unbalanced use of actions	
7. encourage a balanced use of actions	8. are more like writing a sentence	
8. are more like writing a story	9. emphasize procedures	
9. emphasize problem solving	10. encourage more recollection and practice	
10. encourage more thinking, reflecting, and		
use of imagination	11. allow for demonstration of a narrow range	
11. allow for demonstration of a wide range of	of performance	
performance	12. need traditional assessment strategies	
12. need performance assessment strategies	13. usually require enrichment to be added	
13. provide enrichment within the task	after the task	
14. encourage the use of wide variety of	14. permit the use of fewer teaching and	
teaching and learning strategies	learning strategies	
15. encourage greater engagement of students	15. keep students and teachers distanced from	
and teachers in task	the task	
16. not a new/untried idea	16. a much-applied idea	

Conclusion

A math classroom needs to be a centre for sense-making. This can be achieved through the use of rich learning tasks. Students raised on a diet of rich learning tasks are likely to become life-long sense-makers. We should have no lesser goal for our students.

As John Dewey said (in his 1938), What avail is it to win prescribed amounts of information about geography and history, to win ability to read and write, if in the process the individual loses his (or her) own soul: loses his (or her) appreciation of things worthwhile, of values to which these things are relative; if he (or she) loses the desire to apply what he (or she) has learned and above all, loses the ability to extract meaning from his (or her) future experiences as they occur.

References

De Corte, Eric, Lieven Verschaffel and **Brian Greer** "Connecting Mathematics Problem Solving To The Real World" <u>Mathematics For Living: Proceedings of the International Conference</u>, Amman Jordan: The Mathematics Into The 21st Century Project, 2000, p 68

Flewelling, Gary and William Higginson <u>A Handbook on Rich Learning Tasks</u> Centre for Mathematics, Science, and Technology Education, Queen's University, Kingston, 2001.