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Changing the Face of
Arithmetic: Teaching
Children Algebra

esearch studies of classes in which the arith-

metic curriculum has taken an algebraic

approach provide stunning evidence that ele-
mentary students can—

* intuitively understand basic algebraic properties
relevant to solving equations such as the addi-
tion property of equality (i.e., identical units
added to both sides of the equation do not affect
the resulting equality);

* develop situated and consistent forms of alge-
braic notation and rules;

* solve simple equations using a variety of empir-
ical strategies such as trial and error;

» generalize simple linear patterns from a table of
values;

* make sense of the graph of a linear function;
and

* develop an intuitive notion of functions as rules
of correspondence involving objects or ele-
ments in a sequence. (Dougherty 2005; Schlie-
mann et al. 2003)

The basic question that must be addressed at
this time is why is there an interest in integrating
algebra in the elementary arithmetic curriculum
(Algebraic Thinking 1997; NCTM 2000) and, more
important, what benefits await children who
develop algebraic reasoning as early as first grade?
Based on findings from research, significant differ-
ences between arithmetic and algebra might
explain why older children tend to experience dif-
ficulty in learning algebraic ideas. Investigations
done with older children show they have difficulty
transitioning to algebra from an arithmetic-only
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curriculum because arithmetic deals mostly with
particular numbers, quantities, and operations
acquired by rote, whereas algebra focuses on vari-
ables, functions, and invariant relationships and
structures (Brizuela and Schliemann 2003).
Another possible source of difficulty is the percep-
tion that algebra requires a certain level of abstrac-
tion and mental maturity that an arithmetic cur-
riculum does not sufficiently address (Herscovics
and Linchevski 1994). Also, a mistaken assump-
tion exists that if children were to develop an
understanding of arithmetical operations, they
would induce the corresponding arithmetical struc-
tures that are necessary for and preparatory to alge-
braic thinking (Warren 2004).

Suggestions for Teaching
an Algebrafied Arithmetic
Curriculum

Mathematics education researchers who advocate
an early algebra curriculum are telling us that it is
feasible to “algebrafy” arithmetic by loading arith-
metical tasks with algebraic meaning that is appro-
priate to young children. Based on current research
findings, the following recommendations target
different aspects of elementary algebraic thinking.

Teach number systems in such a way that stu- -
dents are aware that inherent properties or rela-
tions exist that must be articulated mathematically.
When we teach children the arithmetic of whole
numbers, we may focus instruction on possible
mathematical properties or relationships that they
can draw from individual objects. They develop the
view early in their mathematical experiences that
doing mathematics involves searching for invariant
properties or relationships that are ultimately inde-
pendent of the objects in which they have been
drawn initially.

For example, play a number game in which chil-
dren guess a rule for the relationship between pairs
of numbers in the following given set of paired
input-output values: (3, 6), (7, 10), (5, 8), . ... The
given sequence can be expressed in different ways,
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[image: image2.png]such as by mapping or using a table. Carraher,
Schliemann, and Brizuela (2000) report that eigh-
teen third graders in their study were successful in
obtaining the correct relationship (for each ordered
pair the second number is three more than the
first), and that they understood the rule to work
with all numbers, not just the given ones. The
teacher in this experiment provided the initial pairs
and led the class to a rule by asking a series of
questions, such as the following:

e “If I start from 5, I'm going to go to what?”
* “If I start from n, then I have to go to what?”
* “So how am I going to write that down?”

Asking children to formulate a rule will help them
make sense of which properties or relationships
stay the same or change, and also what variables
are and the role they play in explicitly expressing
and connecting relationships among numbers and
quantities. Thus a shift in instructional activity
takes place, from merely performing operations on
numbers to establishing numerical properties and
patterns of relationships among numbers.

Teach children to value informal and formal
representations. One goal of instruction is to
bridge children’s own symbols with the formal rep-
resentational systems valued by the wider mathe-
matical community. Notations, symbols, and all
other forms of representation organize children’s
thinking and understanding. Informal representa-
tions are “not lesser means of doing mathematics,
but the very material basis of sense-making”
(Meira 2002, p. 102). Representations are a form of
written manifestation of what and how children are
thinking, and they help children decide what and
how to think. For instance, when children see num-
bers from problems, many of them are predisposed
to think or reason in computational terms without
considering what analysis must be done first,
including possible relationships that they need to
establish prior to making any calculation. In partic-
ular, some elementary children associate the equals
sign with “doing something” (Saenz-Ludlow and
Walgamuth 1998), that is, as calculating numbers
on one side and stating the answer on the other
side. It is not seen in the context of the relationship
“is the same as” (Falkner, Levi, and Carpenter 1999,
p. 232). Hence we bear the responsibility of provid-
ing children with situations that allow them to
expand and enrich their understanding of symbols
and notations and to transition to more formal repre-
sentations. A basic goal of elementary mathematical
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instruction is to help students see what representa-
tions are, what representations are possible, why
they exist, why so many exist, and which ones will
make the most mathematical sense. Warren’s (2004)
work with 8-year-old children in five elementary
schools in Australia illustrates how representations
tend to influence students’ abilities to generalize that
result in different types and levels of generalization.
It seems there is a relationship between representa-
tional competence and facility in making general-
izations, an important skill in algebra.

An activity that can engender talk among chil-
dren about representations is the problem below,
drawn from Blanton and Kaput’s (2004) work with
prekindergarten to fifth-grade students.

Suppose you were at a dog shelter and you
wanted to count all the dog eyes you saw. If
there was one dog, how many eyes would there
be? What if there were two dogs? Three dogs?
100 dogs? Do you see a relationship between
the number of dogs and the total number of
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eyes? How would you describe this relation-
ship? How do you know this works? (Blanton
and Kaput 2004, p. 136)

Blanton and Kaput report that the participating
children provided different representations for the
problem. Furthermore, the solutions they generated
reflected different perspectives of mathematical
thinking, from additive (counting the number of
eyes involves counting by twos) to multiplicative
(double the number of dogs).

Teach functions so that children can begin to
develop a predisposition for algebraic modeling.
Elementary students are capable of functional
thinking, and the rules they describe contain addi-
tive and multiplicative relationships. Exposing
them to functions in their early mathematical expe-
riences provides them with an opportunity to set up
rules of correspondence between two objects or
elements in a set. We may initially use tables that
consist of input and output values to help children
organize their work. Later they can choose to either
use the table/chart method or develop other forms
of functional representation. When we teach the
four fundamental operations from a functional
standpoint, a shift in students’ thinking takes place
from calculating results to figuring out rules rele-
vant to the four fundamental operations. Thus they
begin to explore how operations can be perceived
as not merely “a process that produced a product,
the answer” but as a “process of change” (Warren
2004, p. 423). We should also encourage them to
develop an intuitive, visual understanding of func-
tions and to see how useful algebraic notations are
in expressing relationships among whole numbers.

For example, in teaching the multiplication table
as a function, students can be introduced to mathe-
matical notions such as direct variation, domain and
range, coordinate points in a coordinate plane, and
linear functions. When the focus of learning is on
functions, elementary students can then begin to
view the following tasks as natural extensions of
their work with numbers: obtaining a rule and a for-
mula for a table of values or sequence of numbers;
plotting points in a Cartesian system; and observing
how sets of coordinates appear as points lying on a
straight line. Carraher, Schliemann, and Brizuela
(2000) report that some third graders in their study
were successful in understanding the form y = 2x +
1 given a table of values in which the x column con-
tains numbers from 1 to 10, 20, 30, 100, as well as
n. The y column contains the numbers 3, 5, 7, and
9. As the students were computing the output values

for, say, 3n + 2, at least one of them interpreted the
expression to mean “It’s like doing the 3’s table and
adding 2 more” (p. 15). In fact, toward the end of
the teaching experiment, the students in their study
were successful in drawing closed forms for certain
sequences of whole numbers. Furthermore, they
interpreted arithmetical operations far beyond the
usual notion that operations were merely proce-
dures for combining individual numbers.

Elementary students can do more than under-
stand an explicit rule. They can also infer a func-
tional relationship and derive a rule from paired sets
of input-output values. For example, in the activity
“Guess My Rule,” Carraher and Earnest (2003)
report that eighteen third-grade students were suc-
cessful in coming up with linear patterns from a
given set of paired input-output values. Initially, the
students worked in small groups to formulate their
own linear rules and to compute particular cases so
that others would be able to guess a rule on the basis
of the input-output values. When a group offered
one million as an input and twenty-one million and
one as the output, a student named Cristian was able
to state a correct rule, that is, “n times 20 plus 1.”
The rules that the students developed varied in dif-
ficulty. One group suggested the rule “k times 2
minus 2,” which did not seem to cause too much
trouble for the guessers. Carraher and Earnest’s
research also surfaces an interesting point with
regard to the difficulty elementary students may
have in making sense of equivalent expressions. For
example, a considerable amount of classroom dis-
cussion arose when Cristian’s guess did not appear
to be the same as the group’s formula that took the
form “n X 5 x 4 + 1. This grappling with equiva-
lence arose once more when the students had to
deal with whether k£ X 2 and k + k meant the same
thing, which the class never fully resolved.

Teach arithmetic problems and create learning
situations that require elementary students to think
about mathematical relationships first before any
computation is done. All too often, mathematical
instruction and textbook problems in arithmetic
acculturate children to particular ways of acting
that “condition” them to employ computational
procedures, even if that is not the first thing that
they need to do. The task in figure 1 is a good
example of an open-ended problem that focuses on
relationships among quantities. It deals with asking
students to first compare heights between and
among Tom, Maria, and Leslie and then to com-
pute values in order to verify their arguments. Also,
ask students to analyze relational statements such
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as “Ngoc has twice as much money as Pedro,
using tables and graphs, and gradually add a con-
dition or two that will allow them to generate dif-
ferent approaches to solving the problems (Schlie-
mann et al. 2003).

Davydov (1975) suggests that instead of starting
with numbers, it might be better for young children
to first explore basic conceptual ideas such as sets,
equivalences, and powers. For instance, ask them
to compare attributes of everyday objects based on
some measurable property such as length or area.
Encourage them to describe the comparison by
way of diagrams and relational sentences, using
variables to indicate that letters stand for quantities
being compared and not the objects themselves.
Capitalize on the use of concrete objects and dis-
cuss the significance of various modes of gestures
and actions that they perform with the objects. This
“prenumeric” stage of learning will provide young
children with meaningful mathematical opportuni-
ties of, say, manipulating variable expressions,
equations, or inequalities using appropriate proper-
ties or employing variables for naming and label-
ing particular relationships. In the interview tran-
script below, Mia, a first grader in Dougherty’s
(2005) study, explains to the interviewer the impor-
tance of using variables as a way of expressing and
communicating to others an explicit relationship
between the volumes of two different bottles.

You can’t just say the volume in the red bottle is
more than the volume in another bottle. But we
could name the volumes like C and volume E.
Then it doesn’t matter what bottle it’s in, it’s the
quantity that counts. [Then Mia wrote the follow-
ing expression: C > E.] (Dougherty 2005, p. 5)

Research done with first graders by Dougherty
(2005) and her colleagues shows that the children
in their studies were successful in obtaining such
generalizations, and they used the generalizations to
further investigate particular instances.

Teach arithmetic problems that encourage multi-
ple solutions. This suggestion is novel, particularly
among those of us who perceive arithmetical tasks as
falling within a “single type, one answer only” prob-
lem category. We all need to be aware that valid mul-
tiple solutions to a problem are an indication that dif-
ferent, but equally correct, interpretations of, or
approaches to, solving the problem are possible. The
heights problem in figure 1 is typical of open-ended
problems that we may consider authentic in the sense
that it invites multiple solutions and multiple
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Comparing the heights of Tom, Maria, and Leslie (Carraher,

Schliemann, and Brizuela 2000)

Tom is 4 inches
taller than Maria.

Maria is 6 inches
shorter than Leslie.

Draw Tom'’s
height, Maria’s
height, and Leslie’s
height.

Show what the
numbers 4 and 6
refer to.

Maria

answers. When eighteen third graders were asked to
solve the given task, Carraher, Schliemann, and
Brizuela (2000) report that twelve children assigned
specific values for each child’s height that enabled
them to construct a pictorial relationship, and the
remaining six believed that generating different solu-
tions was possible. The accompanying questions in
figure 2 are aimed at encouraging children to test dif-
ferent possibilities instead of merely seeking out only
one solution or answer.

Exposing children early in their mathematical
experiences to open-ended problems predisposes
them to the view that problems can be represented in
several different ways. We emphasize once more
how different solutions and representations of chil-
dren are related to the manner in which they use and
understand notations and symbols. Some elemen-
tary students tend to perceive variables and
unknowns as the same concept. This overgeneraliza-
tion arises from their limited experiences with prob-
lems in arithmetic (such as “Solve fornin 13 + 7 =
n”) that use a placeholder for a particular, fixed
value that must be computed in some way. However,
other more complex, open problems (such as what

Maria’s Height
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Possible questions to accompany the task in figure 1

1. Why did you use that particular drawing?

2. What can you tell me about the heights of Maria, Tom, and Leslie from your drawing? How did you

figure out the heights?

3. When you thought about making a drawing of the heights of Tom, Maria, and Leslie, did you need
to know what the height of each person was? Why? Why not?
4. What do the numbers 4 and 6 refer to in your drawing?

o o

shortest? How could you figure it out?

© © o N

not?

. Can you figure out their heights in a different way? How would you do it?
. Will you be able to tell for sure who is the tallest among Maria, Tom, and Leslie? What about the

. Is there only one answer to this problem? Why? Why not?

. If there is more than one answer, can you show me how you figure out a different answer?

. If there are more than two answers, can you figure out how many answers there are in all?

. If you know Leslie’s height, will you be able to figure out the heights of Tom and Maria? Why? Why

11. What if you start out knowing what Tom'’s height is—will you be able to figure out the heights of

Maria and Leslie? If yes, how? If no, why not?

values can be substituted for a and b in a = b + 2)
require an understanding of a letter as a symbol rep-
resenting a variable quantity that can take on differ-
ent values depending on the contexts or conditions
stated or assumed in the problems.

Conclusion

Research on elementary children’s mathematical
thinking provides strong evidence that such learn-
ers are indeed capable of reasoning far beyond
what we and, in general, our societies “normally”
assume they can and cannot do. Introducing alge-
bra in the elementary school mathematics curricu-
lum does not mean doing away with traditional,
foundational concepts, processes, and operations
that all children must have in order to be arith-
metically proficient. What early algebra seeks to
accomplish is to take a second look at arithmetical
topics “in a new light and with a new set of atti-
tudes” (Carraher, Schliemann, and Brizuela 2000,
p. 21). The proposal to “algebrafy” arithmetic cap-
tures the essence of this purpose. That is to say, an
algebrafied arithmetic encourages children to
think in terms of multiple relationships within the
context of real or experientially real problem-
solving situations. Furthermore, such algebrafica-
tion involves asking our elementary students to
think about mathematical objects such as whole
numbers, not as mere objects per se with known
procedures for combining them but as objects
whose mathematical structures can be determined
rather easily. In an important sense, an algebrafied
arithmetic reorients students’ mathematical think-

ing toward relationships, including the attainment
of powerful algebraic skills such as patterning and
generalizing (Moses 1997). Algebrafying arith-
metic is not an attempt to teach young children
high school algebra. Learning arithmetic should
be as much about acquiring procedures as it is
about developing an understanding of the underly-
ing general principles (Carpenter, Franke, and
Levi 2003).

Teaching early algebra will require time, effort,
and a different perspective on the way we ask chil-
dren to do arithmetic. At the very least, their reper-
toire of arithmetical skills must include facility in
both numerical and generalized reasoning. This
means the nature of what and how we ask must be
changed. For example, instead of asking students
to find “the” answer to a problem such as 5 X 7 =
n, we may want to pose questions such as “What
number can I replace n by and make this a true
statement?” to treat the statement in an algebraic
way (Usiskin 1999, p. 6). Also, we may develop
tasks such as constructing true/false and open num-
ber sentences in which students are allowed to
argue and to use variables to represent their ideas
(Carpenter, Franke, and Levi 2003).

Kieran and Chalouh (1993) note that efforts at
assisting young students to transition from arith-
metic to algebra must take into account how stu-
dents can be provided with meaningful grade-level
scaffolds in “using letters to represent numbers”
and in being “explicitly aware of the mathematical
method that is being symbolized by the use of both
numbers and letters” (p. 179). In the case of
method, children must understand what operations
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answers possible, and what notations and algebraic
representations are used to describe such opera-
tions. Letters pertain to either a specific value (for
example, those that pertain to solving linear equa-
tions) or a range of values (for example, those that
are used to express generalization formulas).
Kieran and Chalouh (1993) report that children
seem to have more trouble making sense of letters
as representing a range of values rather than a sin-
gle value. They suggest that children’s algebraic
experiences should involve exposure to problems
that target both uses of letters. For example, in
teaching children to calculate a specific value, say,
in the context of solving linear equations, using a
“covering up” strategy and then following it with
instruction using formal methods may be more
effective for students than teaching only the latter.
Such a strategy involves asking teachers to initially
verbalize and for students to make numerical sense
of questions such as “What number plus 5 gives
157" in the case of the equation * + 5 = 15 before
the students are taught the formal strategies. Inso-
far as teaching children to understand the signifi-
cance of letters as representing a range of numbers,
they should be exposed to problems that encourage
them to see how their notion of variables can be
extended so that they are employed as a vehicle for
expressing mathematical truths in a general way
but still within an arithmetical context.
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Characterizing a Classroom Practice
That Promotes Algebraic Reasoning

Maria L. Blanton and James J. Kaput
- University of Massachusetts Dartmouth

- We present here results of a case study examining the classroom practice of one third-
grade teacher as she participated in a long-term professional development project led
by the authors. Our goal was to explore in what ways and to what extent the teacher
was able to build a classroom that supported the development of students’ algebraic
reasoning skills. We analyzed 1 year of her classroom instruction to determine the
robustness with which she integrated algebraic reasoning into the regular course of
daily instruction and its subsequent impact on students” ability to reason algebraically.
We took the diversity of types of algebraic reasoning, their frequency and form of inte-
gration, and techniques of instructional practice that supported students’ algebraic
reasoning as a measure of the robustness of her capacity to build algebraic reasoning.
Results indicate that the teacher was able to integrate algebraic reasoning into instruc-
tion in planned and spontaneous ways that led to positive shifts in students’ algebraic
reasoning skills.

Key words: Algebra; Elementary, K-8; Professional development; Teacher education;
Teachers (characteristics of); Teaching practice

Historically, the mathematical experience (and hence classroom practice) of
most elementary teachers has focused on arithmetic and computational fluency.
However, it is now widely accepted that preparing elementary students for the
increasingly complex mathematics of the new century will require a different type
of school experience, specifically, one that cultivates habits of mind that attend to
the deeper underlying structure of mathematics (Kaput, 1999; Romberg & Kaput,
1999). Rethinking the type of curriculum and instruction in elementary grades that
could effect this has led to a growing recognition that algebraic reasoning can simul-

The research reported here was supported in part by a grant from the U.S.
Department of Education, Office of Educational Research and Improvement, to the
National Center for Improving Student Learning and Achievement in Mathematics
and Science (R305A60007-98). The opinions expressed herein do not necessarily
reflect the position, policy, or endorsement of the supporting agencies.

Jim Kaput was killed in a tragic accident in late July. Although his reputation was
international in scope, Jim worked tirelessly on local fronts to bring educational inno-
vations to disadvantaged school districts. The study reported here reflects a small
piece of that work. For researchers of early algebra, he helped us to imagine a more
powerful mathematics for young children. We will deeply miss his vision, his
insights, and his passion for thinking beyond boundaries.— Maria Blanton
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taneously emerge from and enhance elementary school mathematics (National
Council of Teachers of Mathematics [NCTM], 2000). Indeed, traditional instruc-
tional and curricular elementary school practices centered on teaching arithmetic
procedures, followed by.a largely procedural approach to algebra from middle grades
onward, have been unsuccessful in terms of student achievement (U.S. Department
of Education & National Center for Education Statistics, 1998a, 1998b, 1998c). The
integration of algebraic reasoning into primary grades offers an alternative that
builds the conceptual development of deeper and more complex mathematics into
students’ experiences from the very beginning.

A MULTIDIMENSIONAL VIEW OF ALGEBRAIC REASONING

We take algebraic reasoning to be a process in which students generalize math-
ematical ideas from a set of particular instances, establish those generalizations
through the discourse of argumentation, and express them in increasingly formal
and age-appropriate ways (Kaput, 1995; 1999). For example, students are engaged
in algebraic reasoning when they first describe the total number of handshakes for
a group of specific size, where each person in the group shakes everyone’s hand
once, and then proceed to develop and express a generalization that describes the
total number of handshakes for an arbitrary sized group. Depending on the expe-
rience level of the student, the generalization might be expressed in words or in
symbols and could be based on the student’s observation of a recursive pattern
describing how to get the next total of handshakes from the current one, or a func-
tional relationship between the number of people in the group and the total amount
of handshakes (e.g., “the total number of handshakes is the sum of the numbers from
‘1" up to one less than the number of people in the group,” or “the total number of
handshakes for a group with » people is » times 7 - 1 divided by 2”). Similarly,
students are using algebraic reasoning when, based on systematic analyses of
specific cases, they generalize about the parity of the sum of arbitrary even and odd
numbers, or when they recognize and express properties of a number system, such
as the commutativity of addition of whole numbers. '

As the foregoing examples illustrate, and as has been described elsewhere (Kaput
1998; 1999), algebraic reasoning can take various forms, including (a) the use of
arithmetic as a domain for expressing and formalizing generalizations (generalized
arithmetic); (b) generalizing numerical patterns to describe functional relationships
(functional thinking); (c) modeling as a domain for expressing and formalizing
generalizations; and (d) generalizing about mathematical systems abstracted from
computations and relations. By (a), we mean reasoning about operations and prop-
erties associated with numbers, such as generalizing about the commutative prop-
erty of multiplication or properties of zero, or understanding equality as a relation
between quantities. Generalizing numerical patterns involves exploring and
expressing regularities in numbers, such as describing growth patterns or general-
izations about sums of consecutive numbers. In a similar way, modeling as a form
of algebraic reasoning also involves generalizing regularities but from mathema-
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tized situations or phenomena where the regularity itself is secondary to the larger
modeling task. Finally, although less common to the elementary school curriculum,
generalizing with abstract objects and systems involves operations on classes of
objects and is more traditionally described as “abstract algebra.” Of these four forms,
generalized arithmetic and functional thinking are the more common forms of alge-
braic reasoning in the elementary grades.

There is a growing body of research that seeks to understand how teachers and
students reason algebraically and to identify the kinds of classroom practice that
foster algebraic reasoning. In particular, numerous scholars have documented the
capacity of students from a diversity of socioeconomic and educational back-
grounds to engage in algebraic reasoning, focusing largely on generalized arithmetic
and functional thinking, in ways that dispel developmental constraints previously
imposed on young learners (e.g., Carpenter & Franke, 2001; Carpenter, Franke, &
Levi, 2003; Carraher & Earnest, 2003; Carraher, Brizuela, & Schliemann, 2000;
Falkner, Levi, & Carpenter, 1999; Kieran, 1992; Mason, 1996; Schifter, 1999).
Within these forms of algebraic reasoning, our own work (see, e.g., Blanton &
Kaput, 2003, 2004, 2005) focuses on functional thinking through a process in
which arithmetic tasks are transformed into opportunities for generalizing mathe-
matical patterns and relationships by varying a single task parameter (e.g., the
number of people in a group, or the number of t-shirts purchased).

Although the research cited here generally takes an approach to algebraic
reasoning in which students reason from particular quantities to build mathemat-
ical generalizations, there is also new research emerging from the Davydoviian
(1975a, 1975b) tradition that uses the exploration of mathematical generality itself
(rather than the particulars of number) as a springboard for building students’
understanding of mathematical structures (Dougherty, 2003). In this approach to
algebraic reasoning, students begin by comparing abstract quantities of physical
measures (e.g., length, area, volume), absent of quantification, in order to develop
general relationships about these measures (e.g., the transitive property of equality).

IDENTIFYING THE ALGEBRAIC NATURE
OF A THIRD-GRADE TEACHER’S PRACTICE

The increasing emphasis on algebraic reasoning places elementary teachers in
the critical path to mathematics reform and, in fact, the degree to which they are
capable of developing children’s algebraic reasoning may determine the depth of
that reform (Kaput, 1999; Schifter, 1999). However, most elementary teachers have
little experience with the rich and connected aspects of algebraic reasoning that need
to become the norm in schools and, instead, are often products of the type of
school mathematics instruction that we need to replace. Thus, if we are to build class-
rooms that promote algebraic reasoning, we must provide the appropriate forms of
professional support that will effect change in instructional and curricular practices.
In part, this requires us to understand what it means for a teacher’s practice to support
a culture of algebraic activity in the classroom. Our purpose in the study described
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here was to explore this issue. In particular, our first goal was to examine one third-
grade classroom in order to identify ways in which the teacher integrated algebraic
reasoning into instruction and evidence that the integration was robust and sustained.
As such, we see this study primarily as making a methodological contribution by
developing a framework that describes how one teacher integrated algebraic
reasoning in the classroom and the frequency and diversity with which she did so.
Our second goal was to examine whether that instruction affected students’ capacity
for algebraic reasoning.

METHODOLOGY
Context for the Study: GEAAR and June’s Third-Grade Classroom

At the time of this study, the participating teacher, June,' was in her 2nd year
of the “Generalizing to Extend Arithmetic to Algebraic Reasoning” (GEAAR)
project. GEAAR, a 5-year professional development project conducted in an
urban school district, was designed to develop teachers’ abilities to identify and
strategically build upon students’ attempts to reason algebraically and to use
existing and supplemental instructional resources to engineer viable classroorp
instructional activities to support this (Kaput & Blanton, 1999). The project,
which was in its 2nd year at the time this study was conducted, included a cohort
of 20 grades K5 teachers.

The strategy of GEAAR was to embed teachers’ growth within the constraints
of their daily practices, resources, and capacities to grow mathematically and peda-
gogically. Our structure for achieving this was based on increasing teachers’
capacity to transform instructional materials in order to shift the focus of their prac-
tice from arithmetic to oppcrmunities for pattern building, conjecturing, generalizing
and justifying mathematical facts and relationships. Our approach was to group
teachers across grade level and engage them in solving authentic mathematical tasks
and reflecting on the algebraic character of these tasks and how they might play out
mathematically and pedagogically in the classroom. Teachers then adapted these
tasks to their particular grade levels and implemented them in their own classrooms,
focusing on student thinking and their own classroom practice. They were encour-
aged to think about whether a culture of inquiry was developing, what the class-
room norms for argumentation were, whether students questioned each other and
came to expect justification of mathematical statements, whether there were differ-
ences across classrooms, and how they themselves perceived the evolution of their
practice. Teachers contributed students’ work and oral and written classroom
stories to ongoing biweekly teacher seminars.

June, one of the project participants, initially insisted that she was “not a math
person,” and she described this project-as her first exposure to the ideas of alge-

VJuneis a third-grade classroom teacher in the Fall River School District.
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braic reasoning. She was hesitant about participating and about her ability to do the
mathematics. However, during the 1st year of the project, she conveyed a willing-
ness to incorporate algebraic reasoning tasks in her classroom and to try new ideas
suggested by the leaders and teacher participants. Moreover, she made efforts to
locate classroom activities that might support algebraic reasoning and to contribute
illustrations of students’ work and explanations of students’ thinking to seminar
discussions with teachers. It was from our observations of June during the 1st year
of the GEAAR project that we decided to examine her practice more closely in order
to understand those types of instructional practices that indicated a generative and
self-sustaining capacity to build students’ algebraic reasoning.

The urban school district in which June taught was one of the lowest achieving
school districts in the state based on student performance on a mandatory, state-
wide assessment. All of June’s 18 students, representing diverse socioeconomic and
ethnic backgrounds, participated in our classroom study. The SES of this class and
that of the school was lower than average for the district, with 75% on free lunch
and 15% on reduced lunch, 65% with parents for whom English was a second
language, and 25% with no parent living at home.

Data Collection and Analysis

We used classroom observations to document June’s practice. Specifically, we
observed June’s 90-minute mathematics class approximately twice per week for 1 -
academic year, observing and recording the conversations between June and her
students. The data, which consisted of classroom field notes, audio recordings,
June’s reflections, students’ written work, and classroom activities, were collected
from 38 classroom visits by the researchers. Nineteen additional 90-minute math-
ematics classes, documented by June through written reflections and students’
work, were also included in our data corpus. June’s reflections included descrip-
tions of classroom activity, such as the tasks used and specific conversations with
students, as well as her perceptions on how the lessons flowed and what she thought
was noteworthy about students’ thinking.

Our analysis began informally in the field by first identifying classroom instances
of algebraic reasoning and examining June’s instructional fole as they occurred. As
the data were being collected and transcribed, we focused additionally on identi-
fying those characteristics of June’s practice that indicated she was beginning to
think algebraically, independent of our interventions through professional devel-
opment. After data collection, we analyzed field notes, audio transcriptions, and
reflective writings for evidence of these characteristics and to establish how alge-
braic reasoning occurred throughout the academic year. In particular, we conducted
a formal analysis from which we could build a profile of the robustness of June’s
practice. Our goal was to characterize instances of algebraic reasoning and deter-
mine how they were embedded in instruction, thereby instantiating her capacity to
foster algebraic reasoning. We took the following as a measure of the robustness
with which she integrated algebraic reasoning: (1) the diversity of types of alge-
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braic reasoning, (2) their frequency and form® of integration, and (3) fechniques of
instructional practice by which algebraic reasoning could thrive.

We first coded the field notes, audio transcriptions, and reflective writings by iden-
tifying instances of spontaneous algebraic reasoning (SAR) and planned algebraic
reasoning (PAR). We defined SAR as those instances that occurred without prior
planning on June’s part but that arose naturally in the context of the mathematics
in which students were engaged and that were exploited by June’s instruction. For
example, June exhibited SAR when, during the course of reviewing homework of
simple addition tasks, she spontaneously shifted the focus from computing sums
to determining if the sum of two numbers would be even or odd. When students
responded by first computing the sum to determine if it was even or odd, June began
to use numbers that were sufficiently large so that students could not compute.
Instead, they were forced to attend to the structure in the inscriptions themselves.
(This episode is detailed later in protocol lines 1-6.)

In contrast, PAR referred to algebraic reasoning that resulted from classroom
activities that June planned, in advance of class, to use because of their inherent alge-
braic features. We identified each type based on teacher materials that June provided
us at each visit and from classroom conversations documented through field notes
and audiotape. (For the 19 lessons we did not observe, we used June’s reflective
writings to determine if episodes were PAR or SAR.) Episodes of algebraic
reasoning based directly on those tasks included in June’s class materials were coded
as PAR. For example, June selected the Trapezoid Problem as a preplanned instruc-
tional task. The Trapezoid Problem (detailed further in the section “Category H:
Finding functional relationships”; see also Figure 2) asks students to find a func-
tional relationship describing the number of people who could be seated at an arbi-
trary number of trapezoidal-shaped tables placed end to end. We coded the episodes
of algebraic reasoning related directly to solving this task as PAR.

Each episode of PAR or SAR was further categorized based on the nature of alge-
braic reasoning that occurred. These categories of algebraic reasoning, 13 in all, were
refined throughout the initial analysis and the results were used as a framework for
recoding the entire set of field notes, reflective writings, and audio transcriptions.
Finally, these categories of algebraic reasoning, as well as instances of SAR and
PAR, were analyzed to determine how they occurred ¢hronologically and the
frequency with which they occurred during the academic year. Activities involving
instances of PAR were also differentiated between those that June culled from her
own resources and those from our professional development materials.

Episodes in which algebraic reasoning occurred ranged from brief, 2- to 3-
minute intervals to conversations that took 30 minutes or more. An episode was
defined as a unit of conversation in which a category of algebraic reasoning
occurred. In defining an episode, it was not required that students reach a final stage
of generalization, since the complexity of some ideas made them more suitable to

2 By form we mean whether algebraic reasoning was based on preplanned tasks or embedded spon-
taneously in instruction.
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assimilate over time. Units of conversation were typically demarcated by arithmetic
conversations or shifts in instructional focus, which subsequently served as the
boundaries defining an algebraic episode. For example, June often had both spon-
taneous and planned conversations with students about properties of even and odd
sums, conversations that were brief or extended depending on her instructional
purpose. In this case, an episode was defined as the excerpt of conversation about
properties of even and odd sums. In those lessons not observed by the authors but
written about by June, data consisted of descriptions of conversations and not
actual dialogue. For these, episodes of algebraic reasoning were defined by chunks
of narrative describing classroom events that involved a particular type of algebraic
reasoning.

FINDINGS: THE ALGEBRAIC CHARACTER OF JUNE’S C.'LASSROOM

We used the method of analysis described previously to get a sense of the robust-
ness with which June integrated algebraic reasoning into instruction. In what
follows, we discuss the coding categories that emerged from our analysis, how they
occurred in instruction, and what they indicate about June’s practice. Coding the
data occurred along three dimensions: (1) a characterization of whether June’s use
of algebraic reasoning was PAR or SAR; (2) the types of algebraic reasoning that
occurred and the frequency with which they occurred; and (3) the types of repre-
sentational tools and processes that supported students’ algebraic reasoning and that
June integrated into the regular life of the classroom. Finally, we looked for aspects
of June’s instructional practice that supported the long-term development of
students’ algebraic reasoning skills. We discuss each of these in turn.

Planned and Spontaneous Episodes of Algebraic Reasoning

Out of 57 classroom instructional periods analyzed (38 based on our classroom
visits; 19 contributed by June), we identified 204 episodes of algebraic reasoning.
Of these episodes, 132 (65%) were characterized as SAR. That is, these were
instances in which, in response to students’ thinking, June spontaneously crafted
instruction that required students to reason algebraically. At'times, multiple instances
of SAR occurred during the course of a single task. We find it significant that 65%
of the episodes occurred spontaneously in instruction. Thé frequency of SAR not
only indicates June’s flexibility to spot opportunities for algebraic reasoning, it
suggests growth in her content knowledge by which she could reason algebraically
and see how algebraic reasoning could be integrated into a mathematically distinct
context (e.g., arithmetic) so that it did not occur as a type of “contained enrichment”
separate from regular instruction. ,

June also frequently included in her instruction preplanned algebraic tasks taken
from both the GEAAR project and her own resources. Episodes of algebraic
reasoning resulting from these activities were designated as PAR. Of the 204 total
episodes of algebraic reasoning, 72 instances (or 35%) of PAR occurred, with
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multiple instances of PAR sometimes occurring for a single mathematical task. That
is, each distinct category of algebraic reasoning that occurred within and as part of
a planned activity was designated as PAR.

An analysis of how PAR and SAR occurred chronologically did not suggest, as
one might expect, that June initially concentrated on planned activities and gradu-
ally incorporated spontaneous acts of algebraic reasoning as she became more
familiar with the content. Instead, PAR and SAR were integrated throughout the
year. This is perhaps because June had participated in GEAAR the year prior to this
study and, thus, had some level of experience with it and a growing flexibility to
spontaneously integrate algebraic reasoning in instruction.

Categorizing Algebraic Reasoning in June’s Classroom

In the second phase of coding, we characterized types of algebraic reasoning
and the frequency with which they occurred. We present here an explanation of
the categories that emerged from this portion of the analysis, along with instances
of student thinking as a way to flesh out their meaning. The categories, which
are organized in two sections based on algebraic reasoning as either generalized
arithmetic or functional thinking, were not necessarily disjoint and were at
times intricately related in a given context. A third section presents categoriés
that reflect processes central to algebraic reasoning that also occurred during
instruction. '

An analysis of how each of the categories occurred chronologically in instruc-
tion throughout the year did not indicate a particular pattern of use or frequency. It
is more likely that particular categories occurred as they related to the curriculum
at hand. Moreover, it was not always the case that a particular conversation or
episode reached a complete level of generalization or justification of a generaliza-
tion. Some conversations occurred as preliminary efforts to a more developed
level of algebraic reasoning and were temporarily suspended because of the
complexity of the ideas. As we will describe later, these ideas were often revisited
throughout the year, allowing students to build algebraic reasoning skills.

Categories A-E: Algebraic Reasoning as Generalized Arithmetic

Instances where arithmetic was used as a domain for expressing and formalizing
generalizations were coded as categories A-E. We took these instances broadly to
include arithmetic processes that involved generalized quantities, not necessarily
those processes that had generalization as an end result. This included instances
where students were engaged in whole number operations on abstracted forms (e.g.,
missing number sentences), or used number in a generalized way.

Category A: Exploring properties and relationships of whole numbers. Category
A describes those episodes of algebraic reasoning in which students explored
various properties of, and relationships among, whole numbers. It occurred in 20
of the 204 episodes (about 10%), with 19 of those 20 episodes identified as SAR.
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In particular, we found instances where students—

* generalized about sums and products of even and odd numbers;

* generalized about properties such as the result of subtracting a number from itself,
expressed as the formalization a — a = 0;

* decomposed whole numbers into possible sums and examined the structure of
those sums; and

* generalized about place-value properties.

We include as an example of Category A the following excerpt from a classroom
conversation described by June (see also Blanton & Kaput, 2000):

I asked the class what would happen if I added 2 even numbers together. Most of them
said that I would get an even number. When I asked what would happen if I added 2
odd numbers together, most of them said that I would get an odd number. When asked
about odd and even together, the answers were mixed. In the past I would have told them
the answers by giving them some examples (e.g., 5 + 5 = 10). But . . . I wanted them
to see how it really works, so that they could see that it would [generalize to all cases].
We did [an] activity combining (square) grid-paper shapes to model adding even and
odd numbers. I asked the same questions again. This time they answered with more
certainty. One student explained that ‘the sum of any two odd numbers is even’ using
the idea of adding square shapes: “If you have two odd numbers it makes it even because
if you have leftovers the two leftovers go together.”

The only confusion came when [Sarah’] said that odd + even was odd and even +
odd was even. [Stephen] responded that that couldn’t be. He used numbers in place of
odd and even and said that it (using “odd” and “even”) was the same as using letters
instead of numbers. Sarah explained to the class, “I thought that all the time when odd
is the first one it was supposed to be odd and when even was first it was going to be
even. [But then I saw that that wasn’t correct] because once you start turning them
around, then it’s the same thing. It doesn’t make a difference.”

As students participated in classroom instruction and peer argumentation, their
generalizations about even and odd sums evolved to more sophisticated and math-
ematically grounded notions. Sarah’s perception that the position of a term in a
number sentence determined the parity of a sum (“I thought that all the time when
odd is the first one it was supposed to be odd.”) was challenged by Stephen, who
seemed to interpret even and odd algebraically, as placeholders or variables. Sarah
was eventually able to construct a commutativity argument that disproved her
initial generalization (“[But then I saw that that wasn’t correct] because once you
start turning them around, then it’s the same thing. It doesn’t make a difference.”).

The frequency with which this category occurred (10% of all episodes) and the
mostly spontaneous way June used it in instruction (95% of Category A episodes
were SAR) suggests that it was strongly embedded in her mathematical and peda-
gogical understanding of algebraic reasoning. Its accessibility is perhaps because
it leverages the familiarity of arithmetic in ways that do not require the imple-
mentation of lengthy tasks or the typically more unfamiliar functional thinking.

3 All student names are pseudonyms.





[image: image16.png]Maria L. Blanton and James J. Kaput ’ 421

Thus, exploring properties and relationships of whole numbers may offer more
familiar content for teachers to use and may suggest an appropriate starting point
for professional development.

Category B: Exploririg properties of operations on whole numbers. Category B
describes those episodes of algebraic reasoning in which students explored the struc-
ture of mathematical operations. We identified 21 instances (about 10% of all
episodes) of Category B, 20 of which were characterized as SAR. Category B
includes looking for generalities in operations such as subtracting negative numbers,
as well as exploring relationships between operations, such as commutativity of
addition and multiplication or the distributive property of multiplication over addi-
tion. For example, as students were looking for patterns in the hundreds chart, June
asked them to describe the types of operational actions required to move between
various numbers. She asked, “What if I'm at 75 and I go to 65? What did I do?”
The representation itself (i.e., the hundreds chart) encodes multiple ways of thinking
about possible operations on 75. Students could move directly up one row, which
amounted to subtracting once by 10. Or they could move left by single units and
subtract 1 from 75 ten times. They began to look at more complex moves, such as

-the result of 25—, where each arrow represented a directional move to the adja-
cent number. ’

In fact, as students worked with these types of problems, they began to sponta-
neously generalize about commutative characteristics in the operational symbols
and in certain sequences of operations. For example, they quickly saw that 64—
was equivalent to 641 — and that the result of 4641 TT was 46 because “when you
add 20 and subtract 20, you’re adding nothing.” We maintain that these examples
reflect algebraic reasoning because of the emphasis on relationships between oper-
ations on numbers, not on the results of specific computations.

Category C: Exploring equality as expressing a relationship between quantities.
There were 8 accounts of exploring the algebraic role of “=,” 7 of which were cate-
gorized as SAR. June spent time developing the notion of equality as a relation-
ship between quantities using a balance scale and problems such as 8 + 4 =[] + 5
(Falkner, Levi, & Carpenter, 1999). When modeling problems with the scale,
students worked on both sides of the equality to counter their experiences with
computational exercises that could lead them to interpret “=" as an action object
(Behr, Erlwanger, & Nichols, 1980; Kieran, 1981). As a result, they began to treat
equations as objects expressing quantitative relationships. In one episode, June asked
students to solve (3 X n) + 2 = 14. Her description of one student’s response illus-
trates how he had come to view equality:

Sam said that we could take the 2 away. He said that if we take the 2 from one side we
have to take it from the other side. This was to make it balance. After we [took] the 2
away, he said to take the 12 tiles and put them in groups of 3. There were 4 groups, so
the answer had to be 4. We tried replacing the » with 4 and it worked.

We infer from Sam’s explanation that he viewed “=" as expressing a relation-
ship between quantiiies. He interpreted “=" as signaling a balance (as opposed to
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a call for action) in that any action on the equation (i.e., subtracting 2) required equiv-
alent operations on both quantities. In Sam’s strategy for solving the resulting equa-
tion 3 X n =12, it seemed that the process of “dividing both sides by 3” was not an
operation available to him (division was not yet a common operation for this class).
Thus, he could not perform equivalent operations on both quantities as he had previ-
ously done with subtraction. However, he was flexible enough in his thinking to
compensate by finding the number of groups of 3 in 12. We maintain that his alter-
native strategy was not only quite sophisticated, it also implicitly required Sam to
see 3 X n as equivalent to 12 in order to simultaneously reorganize one quantity in
terms of another. That is, 12 was not the resul? of the action 3 X » but an equiva-
lent way of interpreting the quantity 3 X n.

Category D: Algebraic treatment of number. Category D describes episodes in
which June treated numbers in an algebraic way, that is, as a placeholder that
required students to attend to structure rather than rely on the computation of
specific numbers. This is illustrated in the following interchange, where June chal-
lenged a student’s use of an arithmetic strategy to deduce that 5 + 7 was even:

1 June: How did you get that?

2 Tony: T'added 5 and 7 and then I looked over there [pointing to a visible list of even
and odd numbers on the wall] and saw that it was even.

3 June: What about 45678 + 85631? Odd or even?

4 Jenna: 0Odd.

5 June: Why?

6 Jenna: Because 8 and 1 is even and 0dd, and even and odd is odd.

By using numbers large enough that students could not compute their sum, June
required students to think in terms of even and odd properties to determine parity.
In doing so, we maintain that June used numbers as placeholders, or variables, for
any odd or even numbers. Moreover, in using numbers algebraically she was able
to avoid the semiotic complications of using literals (e.g., 2n + 1 for some integer
n) to represent arbitrary even and odd numbers. This illustrates how the abstract-
ness of numbers gets built as children work with particular quantities and how a
teacher can set the stage for the next move, the formal expression of the general-
ization (which had not yet occurred in this case). There were 4 episodes of Category
D, all of which were SAR.

Category E: Solving missing number sentences. This category involved not only
solving simple single variable equations (e. g., (3 Xn) +2=14) but also sets of equa-
tions as well as single equations with multiple or repeated unknowns. The
complexity of these tasks and students’ capacity to both symbolize (see Category
F) and solve such equations developed throughout the year. Students were asked
to solve problems such as “If ¥ + V' =4, what is V + V + 677 Missing number
sentences were generated by students, sometimes spontaneously, in the course of
other tasks such as operations on a number line. One particularly compelling
episode involved Zolan’s solution to a triangle puzzle. The puzzle was a triangle
subdivided into regions, some containing numbers and others empty, where the
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Figure 1. Zolan’s triangle puzzle

regions had additive relationships between them and the goal was to “complete the
triangle” by finding all the missing numbers (see Figure 1). The missing number's
were found by adding two side-by-side entries to determine the entry above them.
For example, in Figure 1, 7 plus the unknown number to its right would be 12, the
entry above these two numbers. Zolan spontaneously symbolized the problem by
generating a set of equations (7 +a=12,e+4 =5, 4+ d=7) to solve for the missing
numbers in the triangle. Not only could he symbolize unknowns, he understood that
different symbols were needed for different unknown quantities. He was able to
solve each equation for its unknown and use that information in subsequent equa-
tions, finding thata=5,e=1, and d= 3. Although June had not asked students to
set up such equations, that Zolan chose this process without prompting suggests that
he—and perhaps others—were seeing mathematics in new, algebraic ways. Solving
missing number sentences occurred in 19 instances, 14 (or 74%) of which were iden-
tified as SAR.

Cdtegories F-J: Algebraic Reasoning as Functional T) hi;zking

Categories F-J were coded as instances where students were engaged in gener-
alizing numerical and geometric patterns to describe functional relationships. We
took this to include attendant processes, such as symbolizing quantities or making
predictions about data, which ultimately contributed to the task of describing func-
tional relationships in June’s class.

Category F: Symbolizing quantities and operating with symbolized expressions.
Category F involves those instances in which students symbolized quantities or oper-
ated on symbolized expressions. Although this category is connected to Category
E in its emphasis on symbolized equations or expressions (symbolizing mathemat-
ical ideas also occurs in other forms of algebraic reasoning such as generalized arith-
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metic), the focus here is on children’s use of symbols to model problems or to operate
on symbolized expressions, not the solving of an equation for an unknown or
missing quantity or the symbolization of general properties of arithmetic. For
example, the class developed what they described as “secret messages,” which
were symbolic codes for unit conversions. Secret messages were constructed by
analyzing a set of numerical expressions: 3 f¢ 5 in became 3(12) + 5 and 4 ftSin
became 4(12) + 5. Encoding a secret message was then a process of symbolizing
quantities, such as the number of feet, as variable amounts. What was being symbol-
ized was the quantity of a particular unit. Then, to convert feet to inches, students
used the secret message F(12) + I, where F represented the number of feet and / repre-
sented the number of inches. Here, for example, F was treated as a variable that could
take on a range of values. The “secret message” acted as a function to convert a
measurement from feet to inches. '

Students also computed expressions such as R + G, where R and G represented
given amounts of a particular item whose value students found by counting a set
- of objects. Students then used these amounts to evaluate the expressions. Note that,
in this case, alphabet characters were used quite differently than that for secret
messages. In particular, R and G did not represent continuous quantities but place-
holders for specific, to-be-determined quantities. Although there is an important
mathematical difference in whether students are working with variable as an objeet
that can take on a range of values versus an object that functions as an unknown
representation of a specific quantity, the point of this category was to characterize -
both types of situations. That is, we were interested in all cases where students were
abstracting in some way from number to symbol. From this perspective, we also
included in this category instances where students spontaneously symbolized math-
ematical relationships, such as that described previously in Zolan’s solution of the
triangle puzzle. We coded 17 instances of Category F, 15 (88%) of which were iden-
tified as SAR. -

Category G: Representing data graphically. Category G refers to the more tradi-
tional algebra activity of plotting ordered pairs and was identified in only one episode
(categorized as PAR). Although graphing is not inherently algebraic reasoning as
we define it, it is included because it represents a way to encode information
(graphically) that allows for the analysis of functional refationships. In this sense,
it plays a supporting role in algebraic reasoning. :

The fact that only one instance of representing data grai)hically occurred might
raise questions regarding its importance, as perceived by the teacher, in developing
students’ mathematical ideas. As it turned out, the teacher (and students) did occa-
sionally use visual representations, such as frequency diagrams, to represent data
in statistical activities. We chose not to include these examples in this category
because they served a broader representational purpose not restricted to algebraic
thinking. (The broad use of graphical representations is addressed in a subsequent
section concerning tools that support algebraic reasoning.) We note further that this
was a third-grade class, so graphing two-variable data sets, although not impossible,
was not a common activity at this point.
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Category H. Finding functional relationships. Category H describes instances
in which students were asked to explore correspondence among quantities or recur-
sive relationships and develop a rule that described the relationship. We identified
13 instances of this category, 7 of which were identified as SAR. In the earlier part
of the school year, Category H typically involved the use of In/Out charts to find
simple additive relationships. For example, students would often examine values
in the “Out” column to determine patterns such as “add two every time.” However,
as June’s mathematical understanding about patterns and relations evolved, the
complexity of functional thinking tasks evolved as well. In the following reflec-
tion from the latter part of the year, June described how students solved the afore-
mentioned Trapezoid Problem (see Figure 2). As the excerpt opens, students have
just found the number of people who can sit at 12 adjoined desks by finding a pattern
in the data set describing the total number of people. The data were organized by
t charts and In/Out charts.

The strangest thing happened! I saw another pattern. 1 asked the class to look at the chart
in another way. I wanted them to look at the relationship between the desks and the
number of people. Find the rule. No luck. I then gave them the hint to see if there was
a way to multiply and then add some numbers to have it always work. Jon suggested
that we try and find a “secret message.” After a few minutes, believe it or not, Anthony
and Alicia started to multiply the number of desks with different numbers starting with
one. The two children arrived at multiplying by 3 and then they would have to add 2.
We tried many examples from the chart and it worked all of the time. We even tried
some big numbers like 100. We then tried to make a “secret message.” Anthony said
that the 3 stays the same so use a d for desk. This is what he came up with:

3(d) + 2 = number of people }
They realized the 3 came from the people that could sit “on the top and the bottom”
and the 2 came from the two sides. This is not where I thought this was going to go!

The steps through which Anthony and Alicia established a functional relationship
reflected what we think had become a fairly routine practice in June’s classroom:
Students used a systematic strategy to test what pattern would produce the desired

Figure 2. A 3-desk configuration for the Trapezoid Problem
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data; a conjectured relationship was identified and described in everyday language
(“multiplying by 3 and then . . . add 2”), then tested on a diverse domain of numbers;
students symbolized the relationship by noting which quantities varied (the number
of desks) and- which remained constant; and students described how the physical situ-
ation was represented by their model (“They realized the 3 came from the people
that could sit ‘on the top and the bottom’ and the 2 came from the two sides.”).

The algebraic reasoning embedded in finding, describing, justifying, and symbol-
izing mathematical relationships between quantities that vary is crucial to elementary
school mathematics because it creates conceptual underpinnings for the more formal-
ized functional thinking that occurs in later grades. In particular, it brings to the fore
relationships and structure in data that allow students to model the physical world and
think about abstractions beyond the concrete constraints of particular numbers (e.g.,
If you wanted to seat everyone at school, how many desks would you need?).

Category I Predicting unknown states using known data. There were 13 episodes
(6%) of Category I, with one identified as SAR. Category I describes those instances
in which students made conjectures about what would happen for some unknown
state, given what they knew from analyzing data for functional relationships. For
example, with the Handshake Problem, June asked the class to write a number
sentence that would give the amount of handshakes in a group of 12 people, without
enacting the handshakes. Students had already determined the amount of handshakes
in groups of size 6, 7, and 8 and were looking for patterns in the unexecuted sums
that resulted. An excerpt of their conversation is recorded below:

7 June: If there were 12 people here and they were going to shake hands, what
would you do? :

8 Ben: You could only shake 11 people’s hands. [Based on prior conversation we
infer that the student meant the first round of handshakes would involve
11 shakes.]

9 June: Why?

10 Karen: Because he can’t shake his own hand [therefé)re the number sentence
begins with 11 as opposed to 12].

11 June: So how would your number sentence change if there were 12 people?

12 Karen. Eleven, ten, nine, eight, seveh, six, five, four, three, two, one.

Since thoughtful prediction about quantities has as a prérequisite the analysis of
relationships between numbers, not simply operations on them, June’s query about
an unknown state (7)* became a point of entry into algebraic reasoning. Asking
students to predict unknown states prompts the need for a generalization that char-
acterizes data. From students’ analysis of number sentences representing the total
handshakes for various group sizes, they had conjectured what the number of
handshakes for a group of any size would be and used this to make a prediction about
a group of 12 people (and later a group of 20 people) without constructing a
diagram or enacting the handshakes. Instruction that limits students to arithmetic

4 Numbers refer to lines in the protocol.
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skills as a solution strategy (e.g., drawing a diagram and counting out the number
of handshakes) restricts students’ capacity to think about extreme cases, often the
very ones that are scientifically interesting.

Category J: Identifying and describing numerical and geometric patterns.
Category J most frequently involved identifying patterns in numbers, where the
numbers were sometimes generated geometrically. But additionally, June asked
students to identify patterns in sequences of geometric shapes and in sets of
number sentences. One activity June used with students was the Handshake
Problem, in which students were asked to think about the number of handshakes
ina group of any size if each person in the group shook everyone’s hand once (see
also Blanton & Kaput, 2003). In this activity, students created number sentences
that described the number of handshakes for groups of a particular size (for
example, 0+ 1+ 2+ 3 + 4 + 5 described the number of handshakes for a group of
size 6), then analyzed the sums in their unexecuted form in order to identify a
pattern in the set of number sentences. In this way, students were able to deter-
mine that the number of handshakes for a group of any size was given by the sum
of the mmbers from 0 through one less than the size of the group. We identified
55 episodes (27% of all algebraic episodes) of Category J, with 23 (or 42%).char-
acterized as SAR.

Categories K~M: More About Generalization and Justification

In Categories K-M, we identified instances of algebraic reasoning that were not
specific to the forms outlined in the definition of algebraic reasoning provided
earlier. That is, they represented either acts of generalizing abstracted from a
particular mathematical content or processes that we view as central for viable al ge-
braic reasoning to occur. We conjecture that these categories reflect students’ more
evolved ability to reason algebraically and, because of their complexity, could indi-
cate that algebraic reasoning was becoming a habit of mind for students.

Category K: Using generalizations to solve algebraic tasks. Category K defines
those instances in which students used generalizations to build other generalizations,
in all a rather sophisticated level of algebraic thinking. There were 4 instances (2%
of all algebraic episodes) of Category K, one of which was SAR. One particularly
compelling episode concerned generalizing about sums of even and odd numbers.
In it, June had asked students to determine the result of adding three odd numbers:
“If we added odd plus odd plus odd, what would the sum be?” Students argued that
“the sum would have to be odd because 2 odds make an even and when you add
odd plus even, you get odd.” We identify this as an example of Category K because
students invoked previously established generalizations (“odd + odd = even”; “odd
+even = o0dd”) to build their argument. Additionally, they were able to reason with
the generalized referent “odd” in the expression “odd plus odd plus odd” and avoid
the use of specific odd numbers. In this, we maintain that students were able to
achieve a level of abstraction in which they could reason with a generalization to
produce a generalization (Blanton & Kaput, 2000).
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Category L: Justification, proof, and testing conjectures. Category L describes
those processes that we see as essential for a culture in which algebraic reasoning
can thrive but that are not unique to algebraic reasoning. They are processes that
have the explication of student thinking at their core and hence provide a public,
oral context in which students can engage their peers in thoughtful debate as a
conjecture is established or found to be invalid.

There seemed to be a strong expectation of explanation in June’s classroom;
students routinely described or justified their thinking or tested their generalizations.
In one episode, June spontaneously shared with students a conversation with her
peers in which she had argued that zero is an even number, while others had argued
that it was simply a “special number” but not even. She invited students to share -
their thinking. After a protracted conversation with a variety of perspectives (too
lengthy to include here), the view that emerged was that zero is even because it
belonged to a sequence of numbers, all of which were even, and it belonged to the
sequence because it could be reached by skip counting by two (“Zero is an even
number because it goes 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,20, .. .”). What seemed to
be, or at least was becoming, the norm for participation in mathematical conver-
sation was that students justify their perspectives at some level of mathematical
sophistication. As we saw earlier, finding a functional relationship in the Trapezoxd
Problem involved conjecturing and testing a relationship as well as justifying the
components of a symbolized relationship (“They realized the 3 came from the people
that could sit on the top and the bottom and the 2 came from the two sides.”). We -
identified 22 episodes (11% of all episodes) of Category L, 15 (68%) of which were
characterized as SAR.

Category M: Generalizing a mathematical process. Category M refers to conver-
sations in which students built a concept that resulted in generalizing a mathemat-
ical process or formula. We see these instances as larger than finding a functional
relationship (although they are certainly connected) because the generalizations
addressed broad concepts in mathematics. For example, in teaching the concept of
area, June developed an activity in which students determined how many two-
colored counters were needed to cover a large purple square she had given each
student. After discussing the limitations of the circular-shaped counters, she passed
out color tiles as an alternative medium. Students immediately noticed that the color
tiles covered “the whole space” of the large square. Upon introducing the notion
of a unit, June had the following conversation with her students:

13 June: Do I know how big the square is?

14 Mari: No.

15 June: What do you see [referring to the large square which students had covered
with tiles]?

16 Zolan: Four columns, four rows.

17 June: [June then covered a desk with the large purple squares like those she had

given students.] So, what would the area of the desk be?
18 Stephanie: Twenty-four big squares. ‘
19 June: What if we found the area of this table [pointing to a large table in the room]?
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One student suggested using a ruler. Kevin suggested that they see how many purple
squares are in a row and in a column. «

20 Zolan: Count how many [purple squares] are in the bottom row.

21 June: * One, two, three, four, . . . eighteen. [June counts out the number of purple
squares in the bottom row.] And how many 18s do I need?

22 Kevin: Seven!

23 June: What’s the best way to find area?

24 Kevin: You measure this way and that way [indicating length and width] and
multiply.

25 June: What do you call “this way” and “that way”?

26 Student:  Length and width!

We chose to separate this type of activity from other generalizations about rela-
tionships between quantities (such as the total number of handshakes in a group of
any size) because it addresses a broader concept or idea in mathematics (area). We
identified 7 instances of Category M, 6 of which were SAR.

Summary of Categories of Algebraic Reasoning as SAR or PAR Episodes

To summarize, Figure 3 depicts the frequency for the various categories of alge-

Il Frequency of Category (PAR and SAR)
B Frequency of SAR

Number of Episodes

Generalized Functional ‘ . Other
Arithmetic Thinking '

Category of Algebraic Reasoning

Figure 3. Frequency of categories of algebraic reasoning
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braic reasoning compared with the frequency for those episodes additionally char-
acterized as SAR. This depiction more succinctly conveys what June emphasized
in her instruction and how she worked flexibly and spontaneously within classroom
events. For example, Category J (Identifying and Describing Numerical and
Geometric Patterns) occurred most frequently (55 episodes, or 27%) in comparison
to the other categories. This is likely a reflection of the emphasis in GEAAR, which
included a number of pattern-eliciting tasks such as the modified Handshake
Problem (Blanton & Kaput, 2004). A secondary content emphasis of GEAAR was
algebraic reasoning in the form of generalized arithmetic. In fact, with the excep-
tion of Categories K-M, which were not specifically linked to the forms of alge- .
braic reasoning described earlier, the categories of algebraic reasoning identified
in June’s practice were based on either the use of arithmetic as a domain for
expressing and formalizing generalizations (generalized arithmetic) or generalizing
numerical patterns to describe functional relationships (functional thinking).
Moreover, within these two forms, the four most frequently occurring categories
were Categories A (Exploring Properties and Relationships of Whole Numbers),
B (Exploring Properties of Operations on Whole Numbers), E (Solving Missing
Number Sentences), and J (Identifying and Describing Numerical and Geometric
Patterns), with 115 episodes combined (about 56% of all 204 episodes). Again, these
frequencies seemed to reflect the content emphasis of GEAAR, nota limitation of
the teacher to look at other forms of algebraic reasoning. Additionally, we found
that GEAAR teachers, inchiding June, seemed to most readily identify solving
missing number sentences (Category E) as “algebraic reasoning” (perhaps because
these tasks most resembled their memories of high school algebra). Since these were
fairly easy to solve, they tended to be used frequently.

Tt could also be that teachers who are beginning to study algebraic reasoning view
generalized arithmetic and functional thinking as a more natural instructional fit in
an elementary mathematics classroom than the other two forms of algebraic
reasoning identified here (modeling and generalizing about mathematical systems).
This seems particularly true when arithmetic is used as a domain for algebraic
reasoning, since arithmetic typically dominates elementary grades and represents
an area where teachers might be more mathematically certain. On the other hand,
teachers might connect more readily to the mathematics of modeling in a science
lesson, and generalizing about mathematical systems abstracted from computations
and relations is often the domain of higher mathematics. °

Of the 204 episodes of algebraic reasoning, 132 (65%) were identified as SAR.
We take this as an important indicator of a level of autonomy and flexibility in June’s
capacity to identify and support opportunities for algebraic reasoning as they
occurred in instruction. Moreover, if we compare instances of SAR across cate-
gories, we notice that opportunities for SAR occurred more frequently for algebraic
reasoning in the form of generalized arithmetic rather than functional thinking. Out -
of 132 SAR episodes, 64 episodes were in Categories A-E (generalized arithmetic)
and 46 were in Categories F-J (functional thinking). We conjecture that this differ-
ence is due in part to the nature of the content; in June’s class, the types of tasks
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involving functional thinking often took more time to implement. For example, the
frequency of PAR in Category 1 (92%) is perhaps due to the fact that the activity
of prediction réquires previous steps such as generating data, identifying pattemns,
and describing functional relationships. Thus, it was not as likely to occur sponta-
neously in instruction but would more likely be the final stage of an elaborated,
planned activity such as the Trapezoid Problem.

Also, GEAAR teachers, including June, seemed more familiar with arithmetic—
the core of much of elementary grades mathematics—than with the complexities
of covariation, correspondence, and symbolizing that occur in functional thinking.
This may have led to a greater capacity to spontaneously generalize arithmetic.
Additionally, functional thinking tasks tended to require more instructional time and
planning and, thus, seemed less likely to emerge spontaneously. Consequently,
although Figure 3 suggests that generalized arithmetic and functional thinking are
both accessible topics of inquiry for elementary teachers, it also indicates that
teachers might be more likely to engage in spontaneous acts of algebraic reasoning
in the domain of generalized arithmetic. This suggests that generalized arithmetic
might offer the most feasible point of entry for professional development designed
to help teachers identify opportunities for algebraic reasoning in their everyday
instruction. ‘ _

We see the categories described here notas a discrete set of attributes or as simply
a way to encode other teaching practices if one desired but as a statement about the
robust and diverse ways in’ which a teacher’s practice can integrate algebraic
thinking into instruction. In other words, what we gain in part from this analysis is
an existence proof that algebraic thinking can permeate instruction. Although
classroom stories of teachers engaged in particular episodes of algebraic thinking
are extremely helpful in building insights about practice, our purpose instead was
to construct a detailed accounting of the long-term enactment of algebraic thinking
in instruction. June showed a great deal of diversity in'the forms of algebraic
reasoning that she used in instruction. This, along with the frequency with which
she integrated these forms as well as the flexibility with which she exploited on-
the-spot opportunities for algebraic reasoning, suggests that her ability to create
opportunities for algebraic reasoning was robust. Although it is difficult to claim
that some particular quantification of data equates to a’ practice that integrates
algebraic thinking in robust ways, we do conjecture that the sustained integration
of planned and spontaneous opportunities for various forms of algebraic reasoning,
as seen in June’s practice, can lead to a habit of mind that produces algebraic
thinkers.

Tools of Algebraic Reasoning

During analysis, we observed that there were certain reoccurring structures or
processes that seemed to scaffold students’ mathematical thinking, although the
context in which they were embedded did not necessarily involve algebraic
reasoning. Although these do not represent forms of algebraic reasoning per se, we
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came to describe them as tools that support algebraic reasoning (TSAR) and
defined them to be objects, structures, or processes that facilitated students’ math-
ematical reasoning and that could be used to support their algebraic reasoning. In
particular, we defined it to include objects such as In/Out charts (t charts) for orga-
nizing data and concrete or visual artifacts such as number lines, diagrams, and line
graphs for building and making written and oral arguments. In other words, these
objects became referents around which students reasoned mathematically. TSAR
was also defined to include mathematical processes, such as recording, collecting,
representing, and organizing data, that may have occurred in contexts that did not
explicitly involve algebraic reasoning (e.g., statistics).

Throughout the school year, June worked to scaffold students’ use of tools. She
often initially suggested the use of particular objects or processes (for example, the
use of a t chart to record data, or the use of students’ initials to track the handshakes
in a group) and modeled how to use them. However, as the school year progressed,
we observed that students seemed to adopt these tools for their own purposes and
would use them without prompting from June. June also encouraged students to
choose the tools that best suited their purposes and, as the class solved various tasks,
she would often try to make explicit in the conversation the variety of tools that
different students used.

From our analysis of the data, we identified 71 instances of TSAR. Given that
57 class periods were considered, we maintain that an average of 1.25 instances of
TSAR per class period suggests a frequency whereby students could build a reper-
toire of tools for reasoning algebraically. We observed that students increasingly
chose to use these tools without prompting from June. Thus, we conjecture that the
significance of TSAR is that June’s inclusion of these tools as a regular part of
instruction helped to build a habit of mind that supported algebraic reasoning when
it did occur and thereby contributed to the classroom culture of algebraic thinking.

Characteristics of Instructional Practice
That Support the Integration of Algebraic Reasoning

The third measure we used to characterize the robustness of June’s capacity to
integrate algebraic reasoning in instruction involved the identification of tech-
niques of practice that supported the development of students’ algebraic reasoning -
skills. Although these techniques do not form an exhaustive list, we see them as part
of an emerging profile of the type of practice that teachers skilled in algebraic
reasoning might exhibit in instruction. In what follows, we describe each of these
characteristics.

Seamless and Spontaneous Integration of Algebraic Conversations in the Classroom

June was able to create what we describe as an “algebraic conversation,” that is,
a conversation that called on students to engage in some form of generalizing or
formalizing or to reason with generalizations. Moreover, she was able to do this in
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a manner that was spontaneous and seamless. In other words, she was able to
instinctively transform what seemed to be a routine arithmetic task into one that
required algebraic reasoning. In contrast to implementing only predesigned algebraic
tasks as stand-alone activities separate from regular instruction, June was able to
incorporate opportunities for algebraic reasoning into regularly planned, and perhaps
what might have been more arithmetically focused, instruction. The protocol given
in (1-6) illustrates this characteristic. In it, June and her students were discussing
the parity of a sum when June transformed the discussion into an algebraic conver-
sation by using large numbers algebraically as placeholders. We include SAR here
as a characteristic of instructional practice that supports algebraic reasoning because
the seamless and spontaneous integration of algebraic reasoning requires a depth of
skill above and beyond a knowledge level that is confined to the use of prearranged
activities in instruction. Thus, we take SAR as one of the indicators that a teacher’s
practice is expanding to attend to algebraic reasoning opportunities.

The Spiraling of Algebraic Themes Over Significant Periods of Time

June spiraled certain algebraic themes into her conversations with students over
sustained periods of time, revisiting ideas throughout the year in deeper and'more
compelling ways. Whether this spiraling was planned or a result of her own devef—
oping mathematical knowledge (we think the latter), the result was to build the
complexity of algebraic activity in the classroom. For example, at the beginning of
the year, students generated In/Out charts and identified simple additive recursive
relationships for data in the “Out” column. This progressed to analyzing the rela-
tionship between data in input and output columns and describing more complex
relationships that involved both addition and multiplication, such as in the Trapezoid
Problem. June also continued to revisit themes addressing number properties (such
as the commutativity of addition and generalizations about even and odd number
sums); symbolizing to represent unknown quantities; or varying task parameters
in order to generate, identify, and describe numerical patterns. The result was that
students were able to reason about these ideas in increasingly complex ways
(Blanton & Kaput, 2000).

We suggest that June’s ability to spiral these ideas, often spontaneously, showed
that they were not isolated in June’s thinking or in her implementation of them but
could be brought to bear on a diversity of classroom experiences. In fact, we take
as part of the evidence of robustness that she did not use these ideas in isolation or
as a one-time activity, and she often integrated them by her own initiative and
creativity, not by specific instruction from GEAAR.

Integration of Multiple and Independently Valid Algebraic Processes

Although doing what might be considered a stand-alone algebraic activity, June
sometimes pulled into this another algebraic process that altered the complexity of
the original task and, in essence, pushed the “algebra envelope.” For example, during
one class June asked students to use base-10 blocks to solve missing number





[image: image29.png]434 Teacher Practice That Promotes Algebraic Reasoning

sentences, a task that is itself algebraic in nature. After a discussion with students
in which they shared the different strategies they used to solve the problem, she
focused on the sentence 14 = 6 + n and expanded this problem in the following way:
First, she asked students to solve 140 = 60 + n, then 1400 = 600 + n. After students
shared how they had arrived at their solutions, June turned solving this family of
equations into a pattern-finding activity, thus superimposing a separate algebraic
process on the missing-number activity. Although this could be described as a more
primitive form of pattern finding in that it did not involve identifying relationships
between two quantities, it did occur early in the year as June was beginning to exper-
iment with these types of problems. What is of note to us is June’s flexibility and
spontaneity in integrating these tasks and being able to transform an ongoing
problem (in this case, one that has algebraic characteristics) to exploit its algebraic
potential. That she was able to coordinate two separate algebraic processes, which
is mathematically a different task than transforming arithmetic tasks, indicates
growth in her mathematical knowledge as well.

Activity Engineering

One of June’s strengths—and a characteristic that we tried to cultivate in
GEAAR—was adapting or developing mathematical tasks to include algebraic
reasoning. We see autonomy in task development as a critical component of teacher
growth because it shows a capacity to generate resources beyond the finite resource
base provided by professional development. From our analysis, we found that
June became increasingly skilled at finding and adapting or developing resources
that brought algebraic reasoning to the fore in instruction. For example, a few weeks
after we introduced the Handshake Problem to GEAAR participants, June adapted
an activity in which students explored the number of gifts received, based on the
words of the song “The Twelve Days of Christmas.” (Her students were learning
the song for a school production.) In this song, one’s paramour receives an accu-
mulation of gifts over a 12-day period. The task was as follows:

How many gifts did your true love receive on each day? If the song was titled
“The Twenty-Five Days of Christmas,” how many gifts would your true love
receive on the twenty-fifth day? How many total gifts did she or he receive on
the first 2 days? The first 3 days? The first 4 days? How many gifts did she or he
receive on all twelve days?

As it turned out, this problem was mathematically similar to other problems, such
as the Handshake Problem, that we featured in our seminars. In particular, they were
all pattern-eliciting tasks that relied on the use of unexecuted sums to find and
describe general functional relationships (see Blanton & Kaput, 2004). The signif-
icance here was in June’s capacity to bring creative resources into her lessons
without relying solely on the materials we provided. As another example, the
selection of the Trapezoid Problem was inspired by June’s committee work to select
new school furniture. Of the 72 episodes that were identified as PAR, 63% involved
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tasks that June had created or selected from her own resources. We take this as
further evidence of the robustness in her practice of integrating algebraic reasoning.
June was developing her own algebra “eyes and ears” and was learning to plan
instruction independently of the resources provided in the seminars. We summa-
rize the findings on the algebraic character of June’s classroom in Table 1.

EFFECTS OF PRACTICE: STUDENT PERFORMANCE
ON ALGEBRAIC REASONING TEST ITEMS

Ultimately, any claims one makes about the effectiveness of a teacher’s practice
will be measured against student performance. In this study, it was reasonable to
expect that the extent to which June integrated algebraic thinking in her classroom
in robust and flexible ways would improve students’ ability to reason algebraically.
Our purpose in this section is to examine some of the evidence for this. As a
caveat, we note that we see a distinction in the data presented in this section
regarding what it says (or does not say) about June’s practice, namely, that June’s
practice affected student achievement versus how it affected student achievement.
In particular, our intent here is not to address how June’s practice affected student
achievement; this would require a more detailed look at how her actions played oyt
in the classroom and how students were involved in this. Even so, it is difficult to
divorce the study of characteristics of practice that promote algebraic reasoning from
evidence that algebraic reasoning has been promoted. In this sense, although this
section does not intend to address how, it does help establish that June’s teaching
had an impact on student achievement. We have already described classroom
vignettes that suggest students were engaged in various levels of algebraic reasoning,
and we have quantified the frequency with which algebraic reasoning was incor-
porated into instruction. However, more evidence concerning whether students were
beginning to reason algebraically and how widespread this was in the classroom'is
needed. We turn our attention here to this task. N '

At the end of the academic year in which this study occurred, we conducted a
quantitative analysis of students’ performance on selected items of the fourth-grade
Massachusetts Comprehensive Assessment System (MCAS), a state-wide, manda-
tory, standardized exam. In particular, we administered 14 items® (10 multiple-choice
itemns and 4 open-response items) to June’s students and to students in another third-
grade control class that was from the same school and had a tomparable SES. Unlike
June, the teacher of the control group used a traditional arithmetic curriculum and
had not participated in GEAAR. Items were selected to represent a mixture of tradi-
tional items that were of interest to the teacher (e.g., concepts of measurement, time)
and algebraic reasoning items that reflected generalized arithmetic or functional
thinking. Fourteen items were selected so that the test could be administered within
a 1-hour episode.

5 See Appendix for assessment items.
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Table 1 . :
Summary of Findings on the Algebraic Character of June’s Classroom

Planned and Spontaneous Episodes of Algebraic Reasoning (PAR/SAR)

Out of 204 episodes of algebraic reasoning identified, 132 (65%) were identified as SAR.
The remaining 72 episodes (35%) were characterized as PAR.

We did not observe a pattern by which PAR and SAR were integrated in instruction during
the school year.

Types of Algebraic Reasoning and Their Classraom Frequency
Frequency of SAR Frequency

Category ‘ Occurrence per Category
Generalized Arithmetic
A: Exploring properties and relationships of whole
numbers 10 95
B: Exploring properties of operations on whole
numbers 10 95
C: Exploring equality as expressing a relationship
between quantities 4 88
D: Algebraic treatment of number 2 100
E: Solving missing number sentences 10 74
Functional Thinking
F: Symbolizing quantities and operating with
symbolized expressions 8 88
G: Representing data graphically 1 0
H: Finding functional relationships 6 54
I: Predicting unknown states using known data 6 8
J: Identifying and describing numerical and
geometric patterns 27 42
More About Generalization and Justification .
K: Using generalizations to solve algebraic tasks 2 50
L: Justification, proof and testing conjectures i1 68
M: Generalizing a mathematical process 3 86

Representational Tools That Supported Algebraic Reasoning (TSAR)

Objects, structures, Or processes that facilitated students’ mathematical reasoning and could
be used to support their algebraic reasoning

Included representational tools such as In/Out charts (t charts), number lines, diagrams, and
graphs, as well as processes such as recording, collecting, representing, and organizing data
that may also have occurred in contexts outside of algebraic reasoning (e.g., statistics)

Out of 57 class periods analyzed, 71 instances of TSAR were identified.

Characteristics of Instructional Practice That Supported Algebraic Reasoning
Seamless and spontaneous integration of algebraic conversations$ in classroom instruction
Spiraling of algebraic themes over significant periods of time
Integration of multiple and independently valid algebraic processes
Activity engineering

Note: All table values are rounded percentages. Frequency of Occurrence denotes the percentage of occur-
rence for each category out of 204 total episodes. SAR Frequency per Category denotes the percentage
of episodes within a given category that were characterized as spontaneous episodes of algebraic
reasoning (as opposed to planned episodes).
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MCAS was chosen as a performance measure for several reasons. First, it is analyzed
in a manner that allowed for item comparisons of the treatment group (June’s class)
with other students across the school, district, and state. We considered this compar-
ison important because of the literacy demands of the fourth-grade MCAS and the fact
that the majority of students in June’s third-grade class were from ESL homes. More
to the point, MCAS includes algebraic reasoning tasks both as a separate, distinct strand
and integrated across multiple content strands, and it emphasizes problem-solving skills
that are consistent with algebraic reasoning, such as organizing and analyzing data,
explaining, and justifying. Thus, we viewed itas a good measure of students’ capacity
for algebraic reasoning. Finally, because of the accountability that MCAS imposes on
teachers, having a measure that persuaded teachers that algebraic reasoning was rele-
vant to their daily practice was important for our professional development.

Item-Based Comparison of Control and Experimental Groups

State-wide achievement levels for the spring 1999 MCAS® were determined’ to
be (a) “advanced” for students scoring at or above 81%; (b) “proficient” for students
scoring at least 67% and less than 81%; and (c) “needs improvement” for students
scoring at least 41% and less than 67%. An item analysis of student responses from
the control and experimental groups showed that the experimental class outper-
formed the control class on 11 of the 14 test items (see Figure 4). In addition, June’s
students performed significantly better (o.= .05) than the control group on 4 of these
11 items. Overall, the experimental group performed at the level of “proficient” on
36% of the items and at the level of “needs improvement” on 43% of the items,
whereas the control group did not score “proficient” on any of the items and
performed at the level of “needs improvement” on 43% of the items. The experi-
mental group scored below “needs improvement” on only 21% of the items,
whereas the control group scored below “needs improvement” on 57% of the
items. Although the control group outperformed the experimental group on 3 of the
14 items, it was not at a statistically significant level.

Of the 14 items on the assessment, we identified 7 as “algebraic” (items 2, 3, 6,
7.8, 11, and 14) because they addressed aspects of generalized arithmetic and func-
tional thinking, requiring students to find patterns generated numerically and
geometrically, understand and use whole-number properties, and identify unknown
quantities in number sentences. The experimental class outperformed the control
class on 6 out of 7 of these items, although not at a statistically significant (o =.05)
level. Moreover, the experimental class performed at the level of “proficient” or
“needs improvement” on 72% of the algebra items (which tended to be harder than
the more traditional arithmetic problems), whereas the control class performed at
these levels on only 43% of the items. In particular, the experimental group scored

6 Ten assessment items were selected from the 1999 MCAS; the remaining four items were selected
from other MCAS resources.

7 Yearly levels are variable.
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“proficient” on 29% of the items and “needs improvement’ on 43% of the items.
The control class, however, performed at the level of “needs improvement” on 43%
of the algebra items and did not score at the proficient level on any of the items.

Comparison With State and District Performance

Figure 5 provides an item analysis of those MCAS items used in our assessment
that were selected from the 1999 MCAS. In particular, it shows a comparison of
performances by the experimental and control groups at the state, district, and school
levels.® Figure 5 suggests that June’s students’ performance was comparable to that
at the state, district, and school levels for seven items (items 1, 2, 5, 6, 10, 12, 14)
and in two of these (items 10, 12) exceeded fourth-grade results overall. Although
items 10 and 12 had not been identified as “algebraic,” they did involve interpreting
graphs and counting arrangements, both of which had been included in algebraic
reasoning tasks in June’s classroom.

A comparison of the state and district performance on the entire test (not merely
the algebra strand items) with the experimental group’s performance on the
selected 1999 MCAS items by percent per category suggests that the experi-
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Figure 4. Students’ individual performance on selected MCAS items, experimental versus
control

8 State, district, and school data for the other 4 items used in our assessment were not available. Thus,
Figure 5 compares only those items taken from the 1999 MCAS.
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mental third-grade class performed approximately as well as the fourth graders
state-wide and significantly better than the district fourth graders (see Figure 6).
We regard these as strong results, given the considerable advantage of an addi-
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Figure 5. Percentage of correct responses for each comparison group by item
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Figure 6. State and district MCAS scores compared to experimental scores
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tional year’s-instruction for the fourth-grade comparison groups at the state and
district levels, especially the significant development in- the necessary verbal
skills during the intervening year relevant to several of the items, and given the
low SES factors for the-experimental class. We caution, however, that these data
provide us with only one piece of evidence. As in any quantitative analysis of
student achievement, these data are subject to the complexity of how to account
for all design variables in the context of teaching and learning. Thus, they are only
one indicator of student performance.

CONCLUSION

In this article, we have explored how June integrated algebraic reasoning into the
classroom by examining the diversity and frequency with which she did so, as well
as some of the aspects of her instruction that supported this. We have also described
evidence that June’s instruction shaped students’ ability to reason algebraically. As
a result, we have a developing picture of what it looks like for a teacher’s practice
to cultivate students’ algebraic reasoning skills in robust ways. In particular, we infer

" from June’s practice that robustness is measured by a teacher’s ability to flexibly
transform a broad range of arithmetic content so that multiple domains of algebraie
reasoning (e.g., generalized arithmetic, functional thinking) are woven into instruc-
tion over sustained periods of time in ways that allow the complexity of ideas to
be deeply developed. Moreover, robustness is captured by the teacher’s ability to ’
either identify, modify, and adapt resources for planned instructional purposes or
to spontaneously transform arithmetic conversations into those that require alge-
braic thinking. The frequency with which algebraic tasks are integrated in instruc-
tion is also a factor of robustness. Although it is difficult to quantify this robust-
ness, the instructional goal is to build habits of mind whereby students naturally
engage in algebraic reasoning and to use the tools (objects, structures, and processes)
that support it. Marginalizing tasks as enrichment activities that occur in isolation
prevents this development. In June’s class, algebraic reasoning tasks were not
mathematical “field trips” but Were'woven into the daily fabric of instruction.

Building a practice that develops children’s algebraic reasoning requires a signif-
icant process of change for elementary teachers, who are often schooled in different,
arithmetic ways of doing mathematics. In short, elementary teachers must develop
algebra “eyes and ears” as a new way of both looking at the mathematics they are
teaching and listening to students’ thinking about it. This study suggests that gener-
alized arithmetic and functional thinking offer rich (and accessible) entry points for
teachers to study algebraic reasoning. Moreover, it suggests that teachers can learn
to think spontaneously about these forms of algebraic reasoning and that general-
ized arithmetic may be particularly fruitful as an initial context for building teachers’
ability to bring algebraic reasoning into classroom conversations.

Although this study illustrates one teacher’s effort to integrate algebraic reasoning
into her practice, more research is needed to understand the trajectories through
which teachers develop as they participate in teacher communities such as those
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fostered by GEAAR. For example, how does teachers’ knowledge of the various
forms of algebraic reasoning evolve and how do they use this knowledge in instruc-
tion? Why might teachers choose one form of algebraic reasoning over another?
Or, with regards to students, how might integrating algebraic thinking in elemen-
tary grades change the way that children view arithmetic concepts such as number?
How do students reason algebraically with various representational tools and how
does the use of these tools in instruction become a habit of mind for students?
Moreover, if what occurred in June’s third-grade class had occurred in grades K-5
for these students as regular, daily instruction, what would be the nature of students’
understanding of elementary school mathematics and what would the implications
" be for their success in later grades? Furthermore, how can middle grades onward
leverage algebraic reasoning in the elementary grades so that students develop a
deeper understanding of more advanced mathematics? Finally, although the
approach we took in analysis required us to think about classroom events largely
independent of the teacher’s interpretation, studies of teaching practice that incor-
porate both researcher and teacher interpretations of events would strengthen how
we understand algebraic thinking as a classroom process.

We have used June’s practice to examine the nature of algebraic reasoning that
can occur in elementary classrooms. Like many elementary teachers, June had
learned mathematics and how to teach mathematics in ways that were quite
different from instruction that develops students’ algebraic reasoning skills.
Developing a cadre of elementary teachers who understand the complexity of alge-
braic reasoning and how to integrate it in viable ways will require long-term,
sustained professional development that is sensitive to the needs of this unique
population of teachers. We offer June’s case as evidence that elementary teachers
can engage in practices of teaching that support the development of students’ ability
to reason algebraically.
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APPENDIX
1. How many CENTIMETERS long is the leaf?
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Use the pattern in the box below to answer the next question.

2. What are the next four figures in the pattern above?

A3oOr3 oo
. [1O0OOC OO0

3. What number does # stand for in the sentence below? ‘
B8+ +6=8+(n+6)
A2 B.6 C.8 D. 16

4. Your lunch time begins at 12:40 P.M. If your lunch time is 35 minutes long,
what time does it end? -

A.12:05 P.M. B.1:10P.M. C.1:15P.M. D. 1:30P.M.





[image: image39.png]444 Teacher Practice That Promotes Algebraic Reasoning

5. This is a-spinner for a game. Which color are you most likely to spin?

oy,

A. blue B. green C. yellow D. red

6. Melvin collected acorns from the yard. First he placed them like this:

Which number sentence shows the TWO ways Melvin placed his acorns?

A.3x4=4x3 B.3x4 C.3x4>4x%x3 D.3x4>24x%x3
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7. Andrew is setting up tables for a birthday party. He knows that six people can

sit about this table:

U

When he puts two of these tables together end to end, he can seat ten people.

(10

DU Uy

How many people can Andrew seat if he puts three tables together end to end?

8. Write the RULE to find the next number in this pattern.
87, 81,75, 69,

9. There are 60 pieces of art paper and 42 children. If each child gets one piece
of art paper, how many pieces will be left for another project?

A9 B. 18 C.27 D. 42

10. What is the GREATEST number of different outfits you can make with 2 pairs
of pants and 5 shirts? (Each outfit must have exactly one pair of pants and one
shirt.)
A.S B.7 C.10 D. 25

- 11. How many of the smallest squares will be in Figure 6 if this pattern continues?

[
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12. How many goals did the Boston Bruins score i

Teacher Practice That Promotes Algebraic Reasoning

10
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(a) 1 goal (b) 2 goals

13. Mr. Gillman wants to give apple slices to his 13 soccer players during their
game. Each player will receive 3 slices. He plans to cut each apple into 4 slices.

Jan9 Jan16 Jan21

-—@— Goals Scored

(c) 4 goals

How many apples will Mr. Gillman need?

A.8 B. 10

14. Donna made this pattern using sticks. D

C.

7 D.9

Explain how you got your answer.

(d) 3 goals

n their game on January 16, 19997

raw the next figure in the pattern.
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Arithmetic and Algebra in Early
Mathematics Education
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Algebra instruction has traditionally been postponed until adolescence because of
historical reasons (algebra emerged relatively recently), assumptions about psycho-
logical development (“developmental constraints” and “developmental readiness”),
and data documenting the difficulties that adolescents have with algebra. Here we
provide evidence that young students, aged 9-10 years, can make use of algebraic ideas
and representations typically absent from the early mathematics curriculum and
thought to be beyond students’ reach. The data come from a 30-month longitudinal
classroom study of four classrooms in a public school in Massachusetts, with students
between Grades 2—4. The data help clarify the conditions under which young students
can integrate algebraic concepts and representations into their thinking. It is hoped
that the present findings, along with those emerging from other research groups, will
provide a research basis for integrating algebra into early mathematics education.

Key words: Algebra; Children’s strategies; Developmental readiness; Early algebra;
Functions; Mathematics K-12

INTRODUCTION

Increasing numbers of mathematics educators, policymakers, and researchers
believe that algebra should become part of the elementary education curriculum.
The National Council of Teachers of Mathematics [NCTM] (2000) and a special
commission of the RAND Corporation (2003) have welcomed the integration of
algebra into the early mathematics curricula. These endorsements do not diminish
the need for research; quite the contrary, they highlight the need for a solid research
base for guiding the mathematics education community along this new venture. This
article will present partial findings from an investigation of eight- to ten-year-old
students’ algebraic reasoning during a 2 1/2 year classroom intervention study. We

This work was supported by grant #9909591 from the National Science
Foundation to the project “Bringing Out the Algebraic Character of Arithmetic.”
We thank Pat Thompson and Judah Schwartz for their contribution as consultants
to the project and Anne Goodrow and Susanna Lara-Roth for help in data collec-
tion. Preliminary analyses of the present data appeared in Carraher, Schliemann,

_ and Brizuela (2001) and in Carraher, Brizuela, and Earnest (2001).

Copyright © 2006 The National Council of Teachers of Mathematics, Inc. www.nctm.org. All rights reserved.
This material may not be copied or distributed electronically or in any other format without written permission from NCTM.
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undertook this investigation in the hopes of finding evidence that young students
can learn mathematical concepts and representatlons often thought to lie beyond
their reach.

Our approach to early algebra has been guided by the views that generalizing
lies at the heart of algebraic reasoning, arithmetical operations can be viewed as
functions, and algebraic notation can lend support to mathematical reasoning even .
among young students. We focus on algebra as a generalized arithmetic of
numbers and quantities in which the concept of function assumes a major role
(Carraher, Schliemann, & Schwartz, in press). We view the introduction of
algebra in elementary school as a move from particular numbers and measures
toward relations among sets of numbers and measures, especially functional
relations.

Functions have deservedly received increasing emphasis in middle and high
school theorization, research, and curricula (e.g., Dubinsky & Harel, 1992; Schwartz
& Yerushalmy, 1992; Yerushalmy & Schwartz, 1993). We propose that giving func-
tions a major role in the elementary mathematics curriculum will help facilitate the
integration of algebra into the existing curriculum. Key to our proposal is the
notion that addition, subtraction, multiplication, and division operations can be
treated from the start as functions. This is consistent with Quine’s (1987) view that
“a function is an operator, or operation” (p. 72).

The idea is not to simply ascribe algebraic meaning to existing early mathematics
activities, that is, to regard them as already algebraic. Existing content needs to be
subtly transformed in order to bring out its algebraic character. To some extent, this
transformation requires algebraic symbolism. Even in early grades, algebraic nota-
tion ean play a supportive role in learning mathematics. Symbolic notation, number
lines, function tables, and graphs are powerful tools that students can use to under-
stand and express functional relationships across a wide variety of problem contexts.
In this article, we will focus on third graders’ work with number lines and algebraic
expressions as they solve problems in the domain of additive structures. We provide
evidence that young students can make use of algebraic ideas and representations
that are typically omitted from the early mathematics curriculum and thought to be
beyond their reach. Because we believe that functions offer a prime opportunity for
integrating algebra into existing curricular content, we also attempt to clarify what
we mean by treating operators as functions.

Before we present the results of our intervention study, we will review selected
mathematical and psychological ideas relevant to the suggestion that algebra has
an important role in the present-day early mathematics curriculum.

EARLY ALGEBRA FROM MATHEMATICAL AND
COGNITIVE PERSPECTIVES

Discussions about early algebra tend to focus on the nature of mathematics and
students’ learning and cognitive development. We will review background issues
along these two lines.
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On the Nature of Mathematics.: Are Arithmetic and Algebra Distinct Domains?

The fact that algebra emerged historically after, and as a generalization of, arith-
metic suggests to many people that algebra ought to follow arithmetic in the
curriculum. However obvious this claim may seem, we believe there are good
reasons for thinking otherwise. Assume for the moment that arithmetic and algebra
are distinct topics. For example, let us assume that arithmetic deals with operations
involving particular numbers, whereas algebra deals with generalized numbers,
variables, and functions. Such a distinction allows for a tidy ordering of topics in
the curriculum. In elementary school, teachers can focus upon number facts, compu-
tational fluency, and word problems involving particular values. Only later are
letters used to stand for any number or for sets of numbers. It is not surprising that
such a sharp demarcation leads to considerable tension along the frontier of arith-
metic and algebra. It is precisely for this reason that many mathematics educators
(e.g., Filloy & Rojano, 1989; Herscovics & Kieran, 1980; Kieran 1985; Rojano, 1996;
Sutherland & Rojano, 1993) have drawn so much attention to the supposed transi-
tion between arithmetic and algebra—a transition thought to occur during a period
in which arithmetic is “ending” and algebra is “beginning.” Transitional or “preal-
gebra” approaches attempt to ameliorate the strains imposed by a rigid separation
of arithmetic and algebra. However, “bridging or transitional proposals” are predi-
cated on an impoverished view of elementary mathematics—impoverished in their
postponement of mathematical generalization until the onset of algebra instruction.
Students evidence difficulties in understanding algebra in their first algebra course.
But there is reason to believe that their difficulties are rooted in missed opportuni-
ties and notions originated in their early mathematics instruction that must later be
“undone,” such as the view that the equals sign means “yields” (e.g., Kieran, 1981).

Consider, for example, the opportunity to introduce the concept of function in
the context of addition. The expression “-+3” can represent not only an operation
for acting on a particular number but also a relationship among a set of input values
and a set of output values. One can represent the operation of adding through stan-
dard function notation, such as f{x) = x + 3, or mapping notation, such as x — x + 3.
Adding 3 is thus tantamount to x + 3, a function of x. Accordingly, the objects of
arithmetic can then be thought of as both particular (if n=5, thenn+3 =5+ 3 =8)
and general (n + 3 represents a mapping of Z onto Z). If their general nature is high-
lighted, word stories need not be merely about working with particular quantities
but with sets of possible values and hence about variation and covariation.
Arithmetic comprises number facts but also the general statements of which the facts
are instances.

We are suggesting that arithmetic has an inherently algebraic character in that it
concerns general cases and structures that can be succinctly captured in algebraic
notation. We would argue that the algebraic meaning of arithmetical operations is
not optional “icing on the cake” but rather an essential ingredient. In this sense, we
believe that algebraic concepts and notation need to be regarded as integral to
elementary mathematics. ‘
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We are not the first to suggest that algebra be viewed as an integral part of the
early mathematics curriculum. Davis (1985, 1989) argued that algebra should
begin in Grade 2 or 3. Vergnaud (1988) proposed that instruction in algebra or preal-
gebra start at the elementary school level to better prepare students to deal with the
epistemological issues involved in the transition from arithmetic to algebra; his theo-
rizing about conceptual fields provided the rationale for a mathematics education
where concepts are treated as intimately interwoven instead of separate. Schoenfeld
(1995), in the final report of the Algebra Initiative Colloquium Working Groups
(LaCampagne, 1995), proposes that instead of appearing in isolated courses in
middle or high school, algebra should pervade the curriculum. Mason (1996) has
forcefully argued for a focus on generalization at the elementary school level. Lins
and Gimenez (1997) noted that current mathematics curricula from K-12 provide
a limited view of arithmetic. Kaput (1998) proposed algebraic reasoning across all
grades as an integrating strand across the curriculum and the key for adding coher-
ence, depth, and power to school mathematics, eliminating the late, abrupt, isolated,
and superficial high school algebra courses. Similar arguments have been devel-
oped by Booth (1988), Brown and Coles (2001), Crawford (2001), Henry (2001),
and Warren (2001). In keeping with researchers’ and educators’ calls, the NCTM,
through The Algebra Working Group (NCTM, 1997) and the NCTM Standards
(2000), propose that activities that will potentially nurture children’s algebraic
reasoning should start in the very first years of schooling.

But do young students have the capacity for learning algebraic concepts? Let us
look at what research tells us about learning and cognitive development as it relates
to the learning of algebra. This brief review will set the stage for the presentation
and analysis of our own data.

On the Nature of Students’ Learning and Cognitive Development.:
Claims About Developmental Constraints

When students experience pronounced difficulties in learning algebra (see, for
example, Booth, 1984; Da Rocha Falcdo, 1993; Filloy & Rojano, 1989; Kieran,
1981, 1989; Kuchemann, 1981; Resnick, Cauzinille-Marmeche, & Mathieu, 1987;
Sfard & Linchevsky, 1994, Steinberg, Sleeman, & Ktorza, 1990; Vergnaud, 1985;
Vergnaud, Cortes, & Favre-Artigue, 1988; and Wagner, 1981), one naturally
wonders whether this is due to developmental constraints or whether the students
have simply not achieved the necessary preparation. (Developmental constraints
are impediments to learning that are supposedly tied to insufficiently developed
mental structures, schemes, and general information-processing mechanisms. They
are termed “developmental” to imply that they are intimately tied to gradually
emerging structures that serve a wide variety of functions in mental life.)

Developmental constraints refer to presumed restrictions in students’ current
cognitive competence (i.e., “Until students have reached a certain developmental
level they presumably cannot understand certain things nor will they be able to do
so in the near future”), not simply their performance (i.e., “they did not use the prop-
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erty”’). They are associated with the expressions “(developmental) readiness” and
“appropriateness.” Algebra has sometimes been thought to be “developmentally
inappropriate” for young learners, lying well beyond their current capabilities.

Attributions of developmental constraints have been made by Collis (1975), Filloy
and Rojano (1989), Herscovics and Linchevski (1994), Kuchemann (1981), and
MacGregor (2001), among others. Filloy and Rojano (1989) proposed that arith-
metical thinking evolves very slowly from concrete processes into more abstract,
algebraic thinking and that there is a “cut-point separating one kind of thought from
the other” (p. 19). They refer to this cut as “a break in the development of opera-
tions on the unknown” (p. 19). Along the same lines, Herscovics and Linchevski
(1994) proposed the existence of a cognitive gap between arithmetic and algebra,
characterized as “the students’ inability to operate spontaneously with or on the
unknown” (p. 59). Although they recognized that young children routinely solve
problems containing unknowns (e.g., “5 + ? = 8”), they argued that students solve
such problems without having to represent and operate on the unknowns; instead,
they simply use counting procedures or the inverse operation to produce a result.
Although some (e.g., Sfard & Linchevski, 1994) have considered use of the inverse
operation as evidence of early algebraic thinking, others have considered this
procedure as merely prealgebraic (e.g., Boulton-Lewis et al., 1997).

Historical Support for the ldea of Developmental Constraints

Parallels between historical developments and the learning trajectories of students
have provided some support to the notion that students’ difficulties with algebra
reflect developmental constraints. For example, researchers have used Harper’s
(1987) insightful analysis of the historical evolution of algebra—through rhetor-
ical, syncopated, and symbolic stages—to frame the evolution of student algebraic
competence. Sfard (1995) and Sfard and Linchevski (1994) have found connections
between historical and individual developments in mathematics in their theory of
reification, which attempts to clarify the psychological processes underlying the
development of mathematical understanding, including algebra. Likewise, Filloy
and Rojano (1989) provided historical evidence for their idea of a “cut-point”
separating arithmetic from algebra and argued that something analogous to this
occurs in present-day mathematics education at the level of individual thought.

Re-examining Assumptions About Young Students’ Capabilities

Faced with historical analysis and empirical evidence, it would be easy to
conclude that students face a long, difficult journey to algebra. However, history
can be misleading. Negative numbers were the subject of heated debate among
professional mathematicians less than 2 centuries ago, yet they are standard fare in
curricula designed for today’s preadolescent and adolescent students. This is not
to deny that negative numbers are challenging for many students. In fact, many of
the obstacles that students face may indeed be similar to those faced by earlier math-
ematicians. However, when new mathematical and scientific knowledge have been






[image: image47.png]92 Arithmetic and Algebra in Mathematics Education

systematized and worked into the corpus of existing knowledge, it may become
surprisingly approachable. ‘

Historical developments in mathematics are important for understanding the
dilemmas and difficulties students may encounter. But deciding whether certain
ideas and methods from algebra are within the grasp of young students requires
empirical studies with young students who have had access to activities and chal-
lenges that involve algebraic reasoning and algebraic representation. As Booth
(1988) has suggested, students’ difficulties with algebra may result from the limited
ways that they were taught about arithmetic and elementary mathematics.

The classroom studies by Davydov’s team (see Bodanskii, 1969/1991; Davydov,
1969/1991) show that Russian children who received instruction in algebraic repre-
sentation of verbal problems from Grades 1 to 4 performed better than their control
peers throughout later school years and showed better results in algebraic problem
solving when compared to sixth and seventh graders in traditional programs of 5
years of arithmetic followed by algebra instruction from Grade 6. Other promising
results concerning work on equations come from interview studies in Brazil. Brito
Lima and da Rocha Falcdo (1997) found that first- to sixth-grade Brazilian children
can develop written representations for algebraic problems and, with help from the
interviewer, solve linear equation problems using different solution strategies.
Lins Lessa (1995) found that after only one instructional session, fifth-grade
students (11- to 12-year-olds) could solve verbal problems or situations presented
on a balance scale that corresponded to equations, such as x +y + 70 = 2x + y + 20
or 2x + 2y + 50 = 4x + 2y + 10. She also showed that the children’s solutions
- in a posttest were based on the development of written equations and, in more
than 60% of the cases, the solutions were based on the use of syntactical algebraic
rules for solving equations. In our own work, we have found that even 7-year-olds
can handle the basic logic underlying additive transformations in equations
(Schliemann, Carraher, & Brizuela, in press; Schliemann, Carraher, Brizuela, &
Jones, 1998).

Evidence that elementary school children in U.S. classrooms can reason alge-
braically has been building up over the years as a result of reform in mathematics
education that led to the introduction of discussions on generalization of number
patterns in elementary school. Carpenter and Franke (2001) and Carpenter and Levi
(2000) showed that fairly young children who participated in classroom activities
that explore mathematical relations can understand, for instance, that “a+b—-b=a”
for any numbers a and b. Schifter (1999) described compelling examples of implicit
algebraic reasoning and generalizations by elementary school children in classrooms
where reasoning about mathematical relations is the focus of instruction. Blanton
and Kaput (2000) further showed third graders making robust generalizations as
they discuss operations on even and odd numbers and consider them as placeholders
or as variables. -

Another set of studies examined young children’s generalizations and their
understanding of variables and functions. Davis (1971-1972) and his colleagues
in the Madison Project developed a series of classroom activities that could be used
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to introduce, among other things, concepts and notation for varables, Cartesian coor-
dinates, and functions in elementary and middle school. These tasks were success-
fully piloted in Grades 5 to 9 and, as Davis stressed, many of the activities are appro-
priate for children from Grade 2 onward. In a previous classroom intervention study,
we have found that, given the proper challenges, third graders can engage in alge-
braic reasoning and work with function tables, using algebra notation to represent
functional relations (Brizuela, 2004; Brizuela & Lara-Roth, 2001; Brizuela,
Carraher, & Schliemann, 2000; Carraher, Brizuela, & Schliemann, 2000; Carraher,
Schliemann, & Brizuela, 2000; Schliemann, Carraher, & Brizuela, 2001, in press;
Schliemann, Goodrow, & Lara-Roth, 2001). Evidence of algebraic reasoning has
been found even among first and second graders who participated in Early Algebra
activities inspired by Davydov’s (1975/1991) work (Dougherty, 2003; Smith,
2000). More recently, we found (Brizuela & Schliemann, 2004) that fourth graders
(9- to 10-year-olds) who participated in our Early Algebra activities can use alge-
braic notation to solve problems of an algebraic nature.

Why Research in Early Algebra Is Still Needed

It may seem that the major issues of Early Algebra Education were settled when
Davydov’s team of researchers showed success in introducing algebra to young
learners (Davydov, 1969/1991). We regard their work as groundbreaking, but view
it as opening rather than closing the field of early algebra. It highlighted many of
the means by which algebraic concepts could be made accessible and meaningful
to young children, but there is still much to do. Although the Soviet work gives a
straightforward look at early algebra from the teachers’ perspective, it is vitally
important to understand how students make sense of the issues. What are their ques-
tions? What sorts of conflicts and multiple interpretations do they generate? How
do their initially iconic drawings eventually evolve into schematic diagrams and
notation? What sorts of intermediary understandings do children produce?

In addition, the Davydov team has tended to downplay the potential of arithmetic
as a basis for algebraic knowledge. At times, they even argue that arithmetic be intro-
duced into the curriculum after algebra. The authors do make a good case for using
unmeasured quantities in order to encourage students to reflect upon quantitative
relations and to make it difficult for them to bypass such reflection by resorting
directly to computations. However, it 1s difficult to conceive of children developing
strong intuitions about number lines, for example, without ever having used metrics
and without having a rudimentary grasp of addition and subtraction facts.

Finally, we need to have a better understanding of how functions can be intro-
duced in arithmetical contexts. As we noted elsewhere (Carraher, Schliemann, &
Brizuela, 2000), one of the best-kept secrets of early mathematics education is that
addition is a function, or at least can be viewed as a function. Of course one can go
a long way without considering addition a function, and this is what the traditional
curriculum does. Tables of numbers can be thought of as function tables
(Schliemann, Carraher, & Brizuela, 2001). But since children can fill out tables
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correctly without making explicit the functional dependence of the dependent vari-
able on the independent variable(s), they may merely be extending patterns. There
needs to be an additional step of making explicit the functional dependence under-
lying such patterns. This demands that students make generalizations in language,
algebraic notation, or other representations such as graphs and diagrams.

We tried to deal with the issues above in a 30-month longitudinal study with chil-
dren between 8 and 10 years of age (middle of second to end of fourth grade). We
developed and examined the results of a series of activities aimed at bringing out
the algebraic character of arithmetic (see Brizuela & Schliemann, 2004; Carraher,
Brizuela, & Earnest, 2001; Carraher, Schliemann, & Schwartz, in press; Schliemann
& Carraher, 2002; Schliemann, Carraher, Brizuela, Earnest, et al., 2003; Schliemann,
Goodrow, etal., 2001). In this article, we describe the outcomes of two of the lessons
we implemented in third grade. Our aim is to exemplify how young children, as they
learn addition and subtraction, can be encouraged to integrate algebralc concepts
and representations into their thinking.

Students are often introduced to algebra through first-order equations of the form
ax + b = cx + d (or a variant such as ax + b = d). Unfortunately, this introduces far
too many new issues at once and further encourages students to view variables as
having a single value. These problems can be largely avoided by giving students
the opportunity to work extensively with functions before encountering equations.
In our approach, they first encounter “additive offset” functions, a subclass of linear
functions of the form x + b. Because the constant of proportionality is 1, issues of
proportional growth are temporarily suppressed in order to highlight the additive
constant aspect of linear functions. This has certain distinct advantages. Children’s
- initial intuitions about order, change, and equality first arise in additive situations.
And, as we will show, as children work with the number line and with a variable
number line, they can come to effectively deal with variables and functional covari-
ation to approach problems involving additive relations. Additionally, first-order
equations can be finally introduced as a special condition in which two functions
have been constrained to be equal.

THE CLASSROOM STUDY
Young Children Doing “Algebrafied Arithmetic”

The present data come from a longitudinal study with 69 students, in four class-
rooms; as they learned about algebraic relations and notation, from Grade 2 to 4.
Students were from a multiethnic community (75% Latino) in the Greater Boston
area. From the beginning of their second semester in second grade to the end of their
fourth grade, we implemented and analyzed weekly activities in their classrooms.
Each semester, students participated in six to eight activities, each activity lasting
for about 90 minutes. They worked with variables, functions, algebraic notation,
function tables, graphs, and equations. The algebraic activities related to addition,
subtraction,' multiplication, division, fractions, ratio, proportion, and negative
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numbers. All the activities were videotaped. Here we provide a general overview
of lessons employed during Grade 3. Our sequence of activities does not constitute
a fully developed Early Algebra curriculum and is included mainly to provide a
context for the subsequent analysis. -

During the first term of their third grade, when the children were eight and nine
years of age, we held eight 90-minute weekly meetings in each of four classes,
working with additive structure problems and representations. We will first provide
a broad description of how the students were introduced to number lines from Lesson
3 to Lesson 6. We will then describe in more detail the activities we developed in
Lesson 7 and Lesson § in one of the classrooms. The instructors, David and
Barbara, are coauthors in the present article. The lessons generally did not begin
with a polished mathematical representation or with a problem supporting merely
one correct response. Children were instead presented with an open-ended problem
involving indeterminate quantities. After holding an initial discussion about the situ-
ation, we asked students to express their ideas in writing. We then discussed their
representations and introduced conventional representations; the conventions we
chose to introduce had connections both to the problem we were working with and
to the students’ own representations.

Introducing Number Lines

By the time our students had reached Lesson 7 and 8 in the fall semester, they
had already spent several hours working with number lines.

Lesson 3

Their first encounter took place in Lesson 3 when we strung twine across the room
to which large, easily readable numbers were attached at regular intervals; this phys-
ical number line offered their first look at negative numbers (it ranged from ~10 to
+20 over approximately 10 meters). It also allowed us to carry out discussions about
how changes in measured and counted quantities—age, distance, money, candies,
and temperature—as well as pure numbers mapped onto number line representa-
tions. For such activities, children represented diverse values by locating themselves
at various positions along the physical number line. They learned, with pleasure
often bordering on glee, to interpret displacements on the number cord-line in terms
of their growing older, getting warmer or colder, earning and spending money
(which several referred to as “wasting money,” perhaps from the ambiguous
Spanish verb, gastar'). The context served to support vigorous discussions about
the relationships among physical quantities and the order of numbers. Considerations
about debt were crucial to clarifying what negative numbers mean and for helping
the students realize, for example, the difference between having $0 and having -$2
despite the fact that one’s pockets were probably empty in either case.

1 A large percentage of the students in the classes we teach come from immigrant Spanish-speaking
homes.
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In one class, David raised various questions about the number line (“How many
numbers are there on the line? Do the numbers only begin at —10 and proceed to
+20 or are there more? How far can the number line go?”). Students at first
suggested that the only numbers on the line were those for which there were printed
labels (—10 through +20). David asked whether those were all the numbers that
existed. A student suggested that there were “50 numbers,” adding “You can only
go as far as the wall.” David suggested that the students ignore the wall; the impor-
tant thing was to make sure that all the numbers were included. From that moment,
the students began to suggest locations to which the number line would extend:
across the playground, to other regions of the country, and eventually outer space
itself. Each time that students mentioned a new location, David asked whether all
the numbers were now accounted for. Eventually several students suggested that
the number line went “to infinity,” and explained that it “kept going on and on.”

Lesson 4

A week later, David asked the students to explain what the number line was that
they had been discussing. In one classroom, a child mentioned having to behave
“like ghosts” when using the number line, because one penetrated walls to reach
the desired numbers. Another child referred to the number line as “a time machine”:
it allowed him to proceed backward and forward in time when he treated the
numbers as referring to his age. One student objected, arguing that people cannot
go backward in time, to which another responded, “You can in your imagination.”

In a subsequent lesson, we moved from the number line made of twine to diagrams
on paper and projected onto a screen from an overhead projector. We introduced
arrows linking points on the number line to represent changes in values. When several
arrows were connected on the number line, students learned that they could simplify
the information by shortcuts that went from the tail of the first arrow to the head of
the last arrow. They also learned to express such shortcuts or simplifications through
notation: for example, “+7 — 10” could be represented as “~3,” since each expres-
sion had the same effect. They could show the similarities and differences between
the two by making trips along the number line, in front of the class or on paper. The
large-scale number line, projected or strung in front of the whole class, allowed
students and teacher to discuss mathematical operations in a forum where students
who were momentarily not talking could nonetheless follow the reasoning of the
participants. This helped students deal with a range of issues, including the immensely
important one of distinguishing between numbers as points and numbers as inter-
vals. Operands could be treated as points or as intervals (from 0 to the endpoint),
but operations such as “+6” referred to the number of unit spaces between positions
and not to the number of fence posts or markers, so to speak, lying between numbers.

Lesson 6

In Lesson 6, the fourth session in which we dealt with number lines, we intro-
duced a “variable number line” as a means of talking about operations on unknowns
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(see Figure 1). “N minus 4” could be treated as the result of displacement of four
spaces leftward from W, regardless of what number N stood for. With an overhead
projector, we sometimes employed two number lines: the variable number line and
a standard number line with an origin at 0. By placing one line over the other (they
shared the same metric), students could determine the value of N, it was the
integer aligned with N. They also gradually realized they could infer the values
of, say, N + 3 from seeing that N + 7 sat above 4 on the regular number line. The
connections to algebraic equations should be obvious to the reader.

Figure 1. The N-number line.

Working With Unknown Quantities
Lesson 7

Figure 2 shows the problem we presented to students in Lesson 7. The problem
did not specify the amounts of money that Mary and John have in their piggy banks
at the beginning of the story; it merely stated that they have equal amounts. In the
subsequent parts of the problem, the students learned about changes that occurred
in the amounts. In the final part, the students learned how much Mary had in her
piggy bank on Thursday. From this information, the students ultimately determined
how much the protagonists had at the beginning and how much they had on each

Mary and John each have a piggy bank.

On Sunday, they both had the same amount in their piggy banks.

On Monday, their Grandmother comes to visit them and gives $3 to each of
them.

On Tuesday, they go together to the bookstore. Mary spends $3 on Harry
Potter's new book. John spends $5 on a 2001 calendar with dog pictures on
it.

On Wednesday, John washes his neighbor’s car and makes $4. Mary also
made $4 babysitting. They run to put their money in their piggy banks.

On Thursday, Mary opens her piggy bank and finds that she has $9.

Figure 2. The Piggy Bank problem.
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day in the story. We initially displayed the problem as a whole (except for the line
on what happened on Thursday) so that the students could understand that 1t
consisted of a number of parts. Then we covered up all days excepting Sunday.

Representing an Unknown Amount

After reading what happened each day, students worked alone or in pairs, trying
to represent on paper what was described in the problem. During this time, members
of the research team asked individual children to explain what they were-doing and
questioned them in ways that encouraged them to develop more adequate repre-
sentations. In what follows we attempt to describe, on the basis of what was
depicted in the videotapes and in the children’s written work, the content of the class-
room discussion that followed and children’s insights and achievements as they
attempted to represent and solve the various steps of the problem.

Sunday: After Kimberley read the Sunday part for the whole class, Barbara, the
researcher running this class, asked students if they knew how much money each
of the characters in the story had. The children stated in unison, “No,” and did not
appear to be bothered by that. A few uttered “N,” and Talik stated, “N, it’s for
anything.” Other children shouted “any number” and “anything.”

When Barbara asked the children what they are going to show on their answer
sheets for this first step in the problem, Filipe said, “You could make [sic] some
money in them, but it has to be the same amount.” Barbara reminded him that we
do not know what the amount is, and he then suggested that he could write N 70
represent the unknown amount. Jeffrey immediately said that that is what he was
going to do. The children started writing in their handouts, which contained infor-
mation only about Sunday and a copy of the N-number line. Barbara reminded the
students that they could use the N-number line (a number line with N at the origin
and a metric of one unit) on their paper if they wanted. She also drew a copy of the
N-number line on the board.

The students worked for about 3 minutes, drawing piggy banks and representing
the amounts in each of them. Four children attributed specific values for Mary and
John on Sunday. Five represented the amount as N, usually inside a drawing ofa
piggy bank. Two children placed a question mark inside or next to each piggy bank.
And five children drew piggy banks with no indication of what each would contain.

Jennifer, one of the students who used N to represent the initial amount in each
bank (see Figure 3), drew two piggy banks, labeling one for Mary, the other for John,
and wrote next to them a large N after the statement “Don’t know?” In a one-on-
one interaction with Jennifer, David (present but not serving as instructor in the class)
points to the N on her handout and asked:

David: So, what does it say over here?

Jennifer: N.

David: Why did you write that down?

Jennifer: Because you don’t know. You don’t know how much amount they have.

David: So, does N. . . What does that mean to you?
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Figure 3. Jennifer’s initial representation for the problem.

Jennifer. N means any number.

David: Do they each have N, or do they have N together?

Jennifer: [Does not respond.]

David: How much does Mary have?

Jennifer: N.

David: And how about John?

Jennifer: N.

David: Is that the same N or do they have different Ns?

Jennifer: They’re the same, because it said on Sunday that they. had the same amount
of money.

David: And so, if we say that John has N, is it that they have, like, $10 each?

Jennifer: No.

David: Why not?

Jennifer: Because we don’t know how much they have.

From the very beginning of this class, the children themselves proposed to use N
to represent an unknown quantity. We had introduced the convention before in other
contexts, but now it was making its way into their own repertoire of representational
tools. Several children appear to be comfortable with the notation for an unknown
as well as with the idea that they can work with quantities that may remain unknown.

Talking About Changes in Unknown Amounts

Monday: When the children read the statement about what happened on Monday,
that is, that each child received $3 from their grandmother, they inferred that Mary
and John would continue to have the same amount of money as each other, and that
they both would have $3 more than the day before:

A child: Now they have three more than the amount that they had.
Barbara: Do you think that John and Mary still have the same amount of money?
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Children: Yeah!

Barbara: How do you know?

Talik: Because before they had the same amount of money, plus three, they both
had three more, so it’s the same amount. ‘

David: The same amount as before or the same amount as each other?

Talik: The same amount as each other. Before, it was the same amount.

David: . And do they have the same amount on Monday as they had on Sunday?

Talik: No.

Another child: You don’t know!

Barbara: What is the difference between the amount they had on Sunday and the
amount they had on Monday?

Children: They got three more.

Talik: Yeah. They have three more. They could have a hundred dollars; Grandma

comes and gives them three more dollars, so it’s a hundred and three.

Barbara next asked the children to propose a way to show the amounts of money
in the piggy banks on Monday. Nathan was the first to propose that on Monday they
would each have N plus 3, explaining, “Because we don’t know how much money
they had on Sunday, and they got plus, and they got three more dollars on Monday.”
Talik proposed to draw a picture showing Grandma giving money to the children.
Filipe represented the amount of money on Monday as “? +3.”J effrey said that he
wrote “three more” because their Grandmother gave them three more dollars. The
drawings in Figure 4 are Jeffrey’s spontaneous depictions of N + 3. In each case,
the 3 units are individually distinguished atop a quantity, N, of unspecified amount.

James proposed and wrote on his paper that on Sunday each would have “N+27
and therefore on Monday they would have N + 5. It is not clear to us why he chose
N + 2 as a starting point. Carolina wrote N + 3. Jennifer wrote N + 3 in a vertical
arrangement with an explanation underneath: “3 more for each.” Talik wrote
N+ 3=N+3. Carolina, Adriana, and Andy wrote N + 3 inside or next to each piggy

3Am

N13inmendsy | | L_j

Figure 4. Jeffrey’s representations for what happened on Sunday and on Monday.
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bank under the heading Monday. Jeffrey wrote N + 3 for Monday and explained
that that is because their Grandma gave them 3 dollars more. But when David asks
him how much they had on Sunday, Jeffrey answered, “Zero.” Max, sitting next to
him, then says, “You don’t know.” Jimmy, who first represented the amounts on
Sunday as question marks, wrote N + 3, with connections to Mary and John’s
schematic representation of piggy banks, and explained, “Because when the
Grandmother came to visit them they had like, N. And then she gave Mary and John
$3. That’s why I say [pointing to N + 3 on paper] N plus three.”

Barbara commented on Filipe’s use of question marks, and he and other children
acknowledged that N is another way to show the question marks. She then told the
class that some of the children proposed specific values for the amounts in the piggy
banks on Sunday. Speaking against this approach, Filipe stated that “nobody knows
[how much they have]” and James said that these other children “are wrong™ to assign
specific values. Jennifer clarified that it could be one of the suggested amounts.

At this point, several children seemed comfortable with the notation for an
unknown and with the idea that they could work with quantities that might remain
unknown. Their written work showed that, by the end of the class, 11 of the 16 chil-
dren had adopted N + 3 for the amounts each would have on Monday. Only one of
the children continued to use specific amounts in his worksheet, and four produced
drawings that could not be interpreted or written work that included N but in incor-
rect ways suchas N+3 =N.

Operating on Unknowns With Multiple Représentations

Tuesday: When they considered what happened on Tuesday, some of the chil-
dren appeared puzzled and uncomfortable as they wondered whether there would
be enough money in the piggy banks to allow for the purchases. A student suggested
that the protagonists in the story probably had $10. Others assumed that there must

be at least $5 in their piggy banks by the end of Monday, otherwise John could not |

have bought a $5 calendar.

Barbara recalled for the class what happened on Sunday and Monday. The chil-
dren agreed that on Monday each of the children had the same amounts. She then
asked these questions:

Barbara. Adriana, what happens on Tuesday?

Adriana: On Tuesday, they had different amounts of money.
Barbara: Why do they have different amounts of money?
Adriana: Because they spent, Mary spent $3, and John spent $5.
Barbara: So, who spent more money?

Adriana: John.

Barbara: So, on Tuesday, who has more money on Tuesday?

Adriana and
other children: Mary.

Jennifer described what happened from Sunday to Tuesday and concluded that,
on Tuesday, Mary ended up with the same amount of money that she had on
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Sunday, “because she spends her $3.” At this point, Barbara encouraged the chil-
dren-to use the N-number line to represent what has been going on from Sunday
to Tuesday. Always dialoguing with the children and getting their input, she drew
arrows going from N to N + 3 and then back to N again to show the changes in
Mary’s amounts. She showed the same thing with algebraic notation, narrating
the changes from Sunday to Tuesday, step by step, and getting the children’s
input while she wrote N + 3 — 3. She then wrote a bracket under +3 —3 and a 0
below it. She commented that +3 — 3 is the same as 0, and extended the notation
to N+ 3 —3 =N+ 0=N. Jennifer then explained how the $3 spent cancel out
the $3 given by the Grandmother: “Because you added three, right, and then she
took, she spent those three and she has the number she started with.”

Barbara then led the children through John’s transactions on the N-number line,
drawing arrows from N to N + 3, then N - 2, for each step of her drawing. During
this process she used algebraic script to register the states and transformations, and
with the students’ input kept track of the states and transformations, eventually
writing N + 3 — 5 to express John’s amount at the end of Tuesday. Some children
suggested that this amount is equal to “N minus 2,” an inference that Barbara regis-
teredas N+3-5=N-2.

Barbara asked Jennifer to approach the number line and show the difference
between John and Mary’s amounts on Tuesday. Jennifer at first pointed vaguely to
the interval between N — 2 and N. When Barbara asked her to show exactly where
the difference starts and ends, Jennifer correctly pointed to N — 2 and to N as the
endpoints of the segment. David asked J ennifer how much one would have to give
John so that he had the same amount of money as he had on Sunday. Jennifer
answered that we would have to give $2 to John and explains, showing on the
number line, that if he is at N — 2 and we add 2, he goes back to V. Barbara repre-
sented what Jennifer has said as N — 2 + 2 = N. Jennifer took the marker from
Barbara’s hand, drew brackets around the expression “~2 + 2,” and wrote 0 under
it. Barbara asked why “~2 + 2” equals 0 and, together with Jennifer, went through
the steps corresponding to N - 2 + 2 on the N-number line showing how N—-2 +2
ends up at N. Talik showed how this works when N has the value of 150. Barbara
used Talik’s example of N= 150 to show how one ends up at value N on the number
line. .

Nathan’s drawing in Figure 5 depicts Sunday (top), Monday (bottom left), and
Tuesday (bottom right). For Tuesday, he first drew iconic representations of the
calendar and the book next to the values $5 and $3, respectively, the icons and dollar
values connected by an equals sign. During his discussion with an in-class inter-
viewer, he wrote the two equations N+3-5=N - 2 and N +3 — 3 =N, using the
N-number line as support for his decisions. Later, when he learned that N was equal
to 5 (after receiving the information in the problem about Thursday), he wrote 8
next to N + 3 on the Monday section of his worksheet.

Wednesday: Filipe read the Wednesday step of the problem. Barbara asked
whether Mary and John will end up with the same amount as on Monday. James
said, “No,” and Adriana then explained that Mary will have N + 4 and John will
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Figure 5. Nathan’s representation of the problem.

have N + 2. Barbara drew an N-number line and asked Adriana to tell the story using
the line. Adriana represented the changes for John and for Mary on the N-number
Jine, much as she would on a regular number line. Barbara wrote N+ 4 = N+4and
then N— 2 + 4 = N + 2. Talik volunteered to explain this. He said that if you take
2 from the 4, it will equal 2. To clarify where the 2 comes from, Barbara represented
the following operations on a regular number line: -2 +4 = 2.

Barbara then asked if anyone could show why N+ 3 -3 + 4 equals N+ 4. Talik
volunteered to do so, crossed out the subexpression +3 - 3, and said, “We don’t
need that anymore.” Jennifer stated that this is the same as 0. This is a significant
moment, because we had not introduced the procedure of striking out the sum of
a number and its additive inverse (although we had used brackets to simplify sums).
Talik’s striking instead of bracketing shows his understanding that a number and
its bracketed inverse yield 0. Barbara proposed to write out an equation conveying
what happened to John’s amounts throughout the week. The students helped her
go through each of the steps in the story and build the equation N+3 -5+4=
N + 2. But they did not initially agree upon the expression for the right-hand side
of the equation. Barbara helped them visualize the operations on the N-number line.
She asked Jennifer to show how the equation could be simplified. While Jennifer
pondered, Barbara pointed out that this problem was harder than the former and
asked her to start out with +3 — 5; Jennifer answered, “Minus two.” Then they
bracketed the second part at -2 + 4, and Jennifer, counting on her fingers, said it
is +2 and wrote. Talik came up to the front and explained, “N is anything, plus 3,
minus 5, is minus 2; N minus 2 plus 4, equals [while counting on his fingers]
N plus 2.” Talik then tried to group the numbers differently, first adding 3 and 4
and then taking away 5. Barbara showed that when grouping +3 + 4, one arrives
at +7. Next, +7 — 5 results in +2. Hence, the answer is 2, regardless of the order
of the operations. '
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Discovering a Particular Value and Instantiating Other Values

Thursday: When Amir read the Thursday part of the problem, where it stated that
Mary ended with $9, several children suggested out loud that NV has to be 5. So
. Bérbara asked the children, “How much does John have in his piggy bank [at the
end of Thursday]?” Some students claimed that John (whose amount was repre-
sented by N+ 2) has “two more,” apparently meaning “two more than N.” Jennifer,
James, and other children said that he has 7. Some of the students apparently deter-
mined this by adding 5 + 2. Others determined it from Mary’s final amount (9):
Because N + 2 (John’s amount) is 2 less than N + 4 (Mary’s amount), John would
have to have 2 less than Mary (known to have 9). Barbara concluded the lesson by
working with the students in filling out a 2 x 4 table displaying the amounts that
Mary and John had across the 4 days. Some students suggested expressions with
unknown values; others suggested using the actual values, as inferred after the infor-
mation about Thursday’s events had been disclosed.

A New Context: Differences Between Heighis

Lesson 8

The following week, in Lesson 8 we asked the same group of students to work
on the problem shown in Figure 6 (see Carraher, Schliemann, & Brizuela, 2000,
in press, for a previous analysis of the same problem by another group of
students). The problem states the differences in heights among three characters
without revealing their actual heights. The heights could be thought to vary
insofar as they could take on a set of possible values. Of course that was our view.
The point of researching the issue was to see what sense the students made of
such a problem.

After discussing each statement in the problem, the instructor encouraged the
students to focus on the differences between the protagonists” heights (see Carraher,
Brizuela, et al., 2001, for details on this first part of the class), and the students were

Tom is 4 inches taller than Maria.
Maria is 6 inches shorter than Leslie.

Draw Tom’s height, Maria’s height, and
Leslie’'s height.
Show what the numbers 4 and 6 refer to.

Maria Maria's Height

Figure 6. The Heights problem.
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asked to represent the problem on individual worksheets. Most of the students used
vertical lines to show the three heights (see example in Figure 7). To our surprise,
one of the students (Jennifer) chose to represent the heights on a variable number
line much like the one they had been working with during previous meetings (see
Figure 8). Barbara then adopted Jennifer’s number line as a basis for a full-class

/‘hriaﬁf\/
Tom=zYinchestli,
Ledcf— Zinches
a//ér'
Leshie
2 [ Lo Mria
P

‘Figure 7. Jeffrey’s drawing and notation for the Heights problem.

Tom is 4 inches taller than Maria. 2 inch¢$ .
Maria is 6 inches shorter than Leslie. T-Ilers"' ,_\L_.__C_S_f\‘n__e_
Draw: Tom’s height
Maria’s height )
Leslie’s height b\
Show what the numbers 4 and 6 refer to in your drawing.
Yincnes 4- ,'Xs.'n_/
T““tr
3 -
2—
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acia . C\fm\\;g.&_.
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Figure 8. Jennifer’s drawing (nbtches) showing differences but no origin. She also uses a
variable number that forms the basis of subsequent discussion.
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discussion of the relations among. the heights. She further adopted Jennifer’s
assumption that Maria is located at N on the variable number line (see the middle
number line in Figure 9). '

N-BN-UN-3 2 n-1 N NI NEZNES WY Nt5
———t——t——
Mario Y (shie

E\_;(_f’“d
_ "}'t"\(h 2"h T
" /"\Iﬁﬂa. O Less|e
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N-4 N3 N-2 N1 N W) NN NE Y Y
+—+———————+—F—+—}
L Yin ‘ ZiL_J
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N-U ps e N3 2 0 N Ml M2 M3 MY WS s
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10 oM Leslie.
—_— sl )
i Zin,

b in

Figure 9. Three variable number line representations (on an overhead projector) used by
students and teacher to discuss the cases where Maria (middle) is attributed the height of N,
Leslie (bottom) is assigned the height of N; and Tom (top) is assigned a height of N.

Barbara: Now if Maria’s height was N, what would Tom’s height be?
Students: N plus four.

Barbara. Why?

Students: Because he would be four inches taller.

Barbara: Mm, hmm. And what would Leslie’s height be?

Nathan and

students. N plus six.

Nathan: Because Leslie is six inches taller.

It is remarkable that Jennifer realized that a representational tool introduced in earlier
classes would help to clarify the problem at hand. It is equally impressive that the
remaining students appeared comfortable with this idea and easily inferred Tom and
" Leslie’s heights (N + 2, N + 4, respectively) from Maria’s (N). Barbara wondered
to herself whether the students realized that the decision to call Maria’s height N
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was arbitrary. So she asked the students to assume instead that Leslie’s height was
N. The students answered that Tom’s height would be N 2 and Maria’s would be
N - 6 (see the bottom number line in Figure 9). They inferred this not by acting on
the algebraic script but rather by making the appropriate displacements on the vari-
able number line. , '

Next, Barbara asked the students to assume that Tom’s height was N. Max went
to the front of the class and placed Leslie at N + 3 (see the top number line in Figure
9: there is an erasure under N + 3 where Max had first incorrectly put Leslie’s name).
Max realized that the difference between Tom and Leslie is 2, but nonetheless placed
her 3 units to the right of Tom. (This is an example of the “fence post” issue. Students
are well accustomed to the idea that a number refers to the count of elements ina
set, that is, a set’s cardinality. However, the issue before children often is “What
should I count?” On a number line, two sorts of elements suggest themselves. One
can count the number of intervals or one can count the number of “fence posts,” or
notches. In Max’s case, he seemed to have counted the “fence posts” lying between
N and N + 3, the delimiters.) Other students correctly stated that Leslie should be
placed under N + 2. Finally, when Barbara asked Amir to show where Maria’s name
should be located, he placed it, without hesitation, under N — 4.

If we focus too much on the occasional errors made by students like Max, we may
fail to see the larger picture; namely, that by the end of the lesson the students are
relating the given numerical differences to algebraic notation, line segment
diagrams, number lines (including variable number lines), subtraction, counting,
and natural language descriptions. The fluidity with which students move from one
representational form to another suggests that their understanding of functions of
the form x + & is robust and flexible. Their willingness to use N to represent the height
of any of the three characters in the story (as long as the relations among the
heights of the three protagonists are kept invariant) shows an encouraging degree
of robustness in their thinking.

DISCUSSION
Were These Students Doing Algebra?

Do the activities documented here qualify as algebra? Some might be tempted
to argue that students had solved the Piggy Bank problem through procedures, such
as “undoing,” deemed merely arithmetical or prealgebraic (Boulton-Lewis et al.,
1997; Filloy & Rojano, 1989). Others might note that the students did not “solve
for x” in the traditional sense of applying syntactical rules to written forms, without
regard to their meaning, to produce a unique value for the unknown. However, it
is important to recognize what the students did achieve. They used letters to mean-
ingfully represent variables. They used algebraic expressions such as N + 3 to repre-
sent functions. Furthermore, they used knowledge about the changes in quantities
to formulate new algebraic expressions. They understood the relations between the
daily amounts of each protagonist in the story problem; they also understood how
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the amounts on each day related to the starting amounts. In the discussion of the
Heights problem (i.e., Lesson 8), they displayed a clear grasp of functional rela-
tions among indeterminate quantities; they were working with variables while
maintaining an invariant relationship between them. And they generated appropriate
expressions for the heights of the remaining protagonists regardless of which actor
had been assigned the initial value N. As such, it appears that the students were
working with functions, a fundamental object of study in algebra (Schwartz &
Yerushalmy, 1994).

In several senses the lessons described above are typical of the 32 early algebra
Jessons we implemented during 1 semester (eight lessons implemented in each of
four third-grade classrooms). At the beginning, most children relied on instantiating
unknowns to particular values. But over time, in each lesson, and across the lessons,
the students increasingly came to use algebraic notations and number line repre-
sentations as a natural means of describing the events of problems they were
presented with (see Carraher, Schliemann, & Schwartz, in press, for further analysis
of this evolution in fourth grade).

Although students expressed their personal understandings in drawings and
explanations, we do not suggest that their behavior was completely spontaneous.
Clearly, their thinking was expressed through culturally grounded systems, including
mathematical representations of various sorts. Number line representations and the
use of letters to represent unknown amounts or variables are examples of cultural
representations we explicitly introduced to the students. The issue is not whether
they invent such representations fully on their own but rather whether they embrace
them as their own—that is, whether they incorporate them into their repertoire of
expressive tools. :

Findings such as these have persuaded us that, given the proper experiences, chil-
dren as young as eight and nine years of age can learn to comfortably use letters to
represent unknown values and can operate on representations involving letters and
numbers without having to instantiate them. To conclude that the sequence of oper-
ations “N + 3 — 5 + 47 is equal to N + 2, and to be able to explain, as many children
were able to, that N plus 2 must equal 2 more than what John started out with, what-
ever that value might be, is a significant achievement—one that many people
would think young children incapable of. Yet such cases were frequent and not
confined to any particular kind of problem context. It would be a mistake to dismiss
such advances as mere concrete solutions, unworthy of the term “algebraic.”
Children were able to operate on unknown values and draw inferences about these
operations while fully realizing that they did not know the values of the unknowns.

We have also found further evidence that children can treat the unknowns in addi-
tive situations as having multiple possible solutions. For example, in a simple
comparison problem (Carraher, Schliemann, & Schwartz, in press) wherein we
described one child as having three more candies than another, our students from
Grade 3 were able to propose that one child would have N candies and the other
would have N + 3 candies. Furthermore, they found it perfectly reasonable to view
a host of ordered pairs—(3, 6), (9, 12), (4, 7), (5, 8)—as all being valid solutions
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for the case at hand, even though they knew that in any given situation only one
solution could be true. They even were able to express the pattern in a table of such
pairs through statements such as “the number that comes out is always three larger
than the number you start with.” When children make statements of such a general
nature, they are essentially talking about relations among variables and not simply
unknowns restricted to single values. We have found that eight- and nine-year-old
children can not only understand additive functions but also meaningfully use
algebraic expressions such as “n —n + 3” and “y =x + 37 (see Carraher, Schliemann,
& Brizuela, 2000; Schliemann, Carraher, & Brizuela, in press).

Cases such as those above may seem strange to people accustomed to thinking
of variation in terms of changes in the values of a single entity over time. Variation
is actually a broader concept than change. Sometimes, variability occurs across a
set of unrelated cases, as in the variation of heights in a population or as in the covari-
ation of heights and weights. The example of one child having three more candies
than another can be understood as variation within and, even more important,
invariance across a set of possibilities. The invariance across cases can form the
basis of discussions with students about function tables containing many “solutions,”
one for each row. In this case, column one would correspond to the amount of
candies the first child has; column two would correspond to the amount of candies
the second child has. Each row contains a valid solution, insofar as it is consistent
with the information given. Once students have filled out and explored such a func-
tion table, the issue is to explain it. What properties stay the same regardless of the
row? This is no trivial matter, and it gives rise to general statements about number
patterns that are the essence of algebra.

Such forms of variation are important because they allow one to reason both about
particular values and sets of possible values. They allow one to consider unknowns
as variables. This is precisely the spirit with which many students viewed the
Piggy Bank problem before information was discovered, regarding Thursday, that
finally allowed them to disregard the multiple possibilities and focus on the values
to which the problem was now constrained. Students who feel the need to instan-
tiate variables from the beginning can do so and participate in the classes from their
own perspective, restricting their attention to one possible scenario from the start.
This should not be a reason for concern, for we have found that such students learn
from others and from class discussions, and within a few weeks they comfortably
welcome algebraic representations into their own personal repertoire of expressive
tools. Were their initial reliance upon instantiation due to developmental constraints,
the relatively quick learning we witnessed from the piggy bank lesson to the lesson
on heights could not have taken place.

The students demonstrated that they had begun to handle fundamental algebraic
concepts. Still, there is much for them to learn. Algebra is a vast domain of math-
ematics, and the progress shown by students in the present study is the beginning
of a long trajectory. In this initial stage, students benefit immensely from working
in rich problem contexts that they use to help structure and check their solutions.
As they become increasingly fluent in algebra, they will be able to rely relatively
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less on the semantics of the problem situation to solve problems. Algebraic expres-
sions will not only capture but, more and more, will help guide their thinking and
problem solving. With time, they will hopefully be able to derive valid inferences
by acting on the written and graphical forms themselves, without having to reflect
back on the rich problem contexts in order to successtully proceed; that is, their
semantically driven problem solving will become increasingly driven by the syntax
of the written expressions. :

Concluding Remarks

Our work has been guided by the ideas that (1) children’s understanding of addi-
tive structures provides a fruitful point of departure for an “al gebrafied arithmetic”;
(2) additive structures require that children develop an early awareness of negative
numbers and quantities and their representation in number lines; (3) multiple prob-
lems and representations for handling unknowns and variables, including algebraic
notation itself, can and should become part of children’s repertoires as early as
possible; and (4) meaning and children’s spontaneous notations should provide a
footing for syntactical structures during initial learning, even though syntactical
reasoning should become relatively autonomous over time.

There may be many reasons for viewing algebra as more advanced than arith-
metic and therefore placing it after arithmetic in the mathematics curriculum. But
there are more compelling reasons for introducing algebra as an integral part of early
mathematics. There are good reasons for considering the abstract and concrete as
interwoven rather than fully distinct (Carraher & Schliemann, 2002). Addition and
subtraction, multiplication and division are operations, but they are also functions
and so are amenable to description through algebraic notation. If we dwell too much
on the concrete nature of arithmetic, we run the risk of offering students a superfi-
cial view of mathematics and of discouraging their attempts to generalize. Although
computational fluency is important (even crucial) for allowing students to reason
algebraically, it does not assure that students will be attentive to the patterns under-
lying arithmetic and arithmetical relations. Algebraic notation (as well as tables,
number lines, and graphs) offers a means for expressing such patterns clearly and
succinctly. If introduced in meaningful ways, it offers the virtue of bringing together
ideas that otherwise might remain fragmented and isolated.

Many have argued that young children are incapable of learning algebra because
they do not have the cognitive wherewithal to handle concepts such as variables and
functions (Collis, 1975; Filloy & Rojano, 1989; Herscovics & Linchevski, 1994;
Kuchemann, 1981; MacGregor, 2001). Our classroom studies suggest that children
can handle algebraic concepts and use algebraic notation somewhat earlier than
commonly supposed. There may be no need for algebra education to wait a supposed
“transition period” after arithmetic. As others have shown (Carpenter & Franke, 2001;
Carpenter & Levi, 2000; Schifter, 1999), there are many opportunities for introducing
algebraic concepts into the curriculum during the early years of mathematics educa-
tion. Moreover, we also show, as Bodanskii (1991) and Davis (19711 972) did before
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us, that it is possible to introduce algebraic notation in the early grades. Our data
further expand our understanding of how young children come to appropriate algebra
notation as they represent open-ended problems, and we provide examples of how
the teaching and learning of arithmetic operations can be related to functions.

Lest we give the mistaken impression that any mathematical concept can be
learned at any time, let us set the record straight. By arguing that the algebraic char-
acter of arithmetic deserves a place in early mathematics education, we are not
denying the developmental nature of mathematical skills. Number concepts, the
ability to use algebraic notation, to interpret graphs, model situations, and so forth,
develop over the course of many years. Even in so “simple” an area as additive struc-
tures, children need to be able to reify differences so that they can be treated as bona
fide quantities with their own properties and subject to arithmetical operations.
Children who are just beginning to work with addition and subtraction may inter-
pret a statement such as “Tom is 4 inches taller than Maria, and Maria is 6 inches
shorter than Leslie” as meaning that one of the children is 4 inches tall while another
is 6 inches tall (Carraher, Schliemann, & Brizuela, 2000, Schliemann, Carraher, &
Brizuela, in press). They may confuse a height with a difference between two
heights. When children get beyond this issue, this does not signify that they will
no longer have troubles with additive differences. When one changes the context
to one about money or introduces a number line, new problems arise (for example,
“How does a difference in heights manifest itself when two line segments are used
to represent people’s heights?””). Thompson (1993) found that fifth-grade students
may confuse second-order additive differences (“the differences between the
heights of two brother-sister pairs™) with first-order differences (“the differences
between a brother and sister”). Issues involving concepts as rich as additive differ-
ences, ratio and proportion, division, and so on, crop up again and again in the course
of one’s life, and it would be naive to assume that the challenges are conquered,
once and for all, at a particular moment in time, least of all, when one learns how
to perform calculations with addition and subtraction in early schooling. One could
take a pessimistic view of such a conclusion: We will never cease to stumble when
confronted with variations of mathematical problems that we have encountered
before. But this same situation provides reason for hope, for it signifies that the
schemes that have begun their evolution very early in life, perhaps as early as when
a baby begins to play with nesting cups, will later prove useful to tasks that they
were never designed to handle but which nonetheless succumb to metaphorical
opportunism.

Early Algebra Education is by no means a well-understood field. Surprisingly
little is known about children’s ability to make mathematical generalizations and
to use algebraic notation. As far as we can tell, at the present moment, not a single
major textbook in the English language offers a coherent algebrafied vision of early
mathematics. We view algebrafied arithmetic as an exciting proposition, but one
for which the ramifications can only be known if a significant number of people
undertake systematic teaching experiments and research. It may take a long time
for teacher education programs to adjust to the fact that the times have changed.
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We hope that the mathematics education community and its sources of funding
recognize the importance of this venture. '
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