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tems of equations; finding the value of an

unknown; using the quadratic formula; or
otherwise working within a system of formulas,
equations, and literal symbols. From this perspec-
tive, the suggestion that algebra should permeate
the K—12 mathematics curriculum seems unrea-
sonable and certainly indefensible if we take seri-
ously that children should learn mathematics by
making sense of things on the basis of their current
mathematical understandings. Do we expect chil-
dren in kindergarten and first grade to solve alge-
braic equations? If not, then what might it mean to
suggest that algebraic thinking should be part of
the mathematics curriculum for the elementary
grades?

In taking the position that algebra is for all, the
NCTM is calling for a complete rethinking of what
we might mean by algebra (1994). In effect, the
NCTM is advocating that the notion of algebra be
expanded to include a range of mathematical activ-
ity. To assist in this rethinking process, in 1994 the
NCTM appointed an Algebra Working Group
charged with developing and elaborating a vision
of K—12 algebra that would help teachers and
school systems as they grapple with the process of
change. Significantly, the working group deliber-
ately chose not to begin by defining algebra or set-
ting forth standards for algebra (NCTM 1995).
Such an approach would be static, narrow, and lim-
ited and be bounded by historical views and per-
spectives of algebra. Rather, the group chose to
take an emerging view of algebra. This view
acknowledges the dynamic nature of mathematics
in general and of algebra in particular, treats math-
ematics as a human activity (Davis and Hersh
1981), and puts students’ thinking at the forefront.
In this view, we develop our vision of algebra as
we consider the mathematical activity and thinking

For many adults, algebra means solving sys-
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of students. This position is consistent with the
views of Smith and Thompson (in press) who
argue, “We believe it is possible to prepare chil-
dren for different views of algebra—algebra as
modeling, as pattern finding, or as the study of
structure — by having them build ways of knowing
and reasoning which make those mathematical
practices appear as different aspects of a central
and fundamental way of thinking” (emphasis
added). Thus, the emphasis is not on whether an
activity should qualify as being algebraic but on
the underlying thinking and reasoning of the stu-
dents. This view is particularly helpful at the ele-
mentary school level because it eliminates the
need to focus on what algebra “content” should be
included in the elementary grades. Instead, the cru-
cial issue is the nature of the children’s reasoning
and thinking.

The purpose of this article is twofold. The first
is to explore children’s thinking that might be
foundational to algebraic reasoning. In keeping
with the spirit of the Algebra Working Group,
definitive claims are made about what does and
does not constitute algebraic reasoning. Instead,
readers are invited to consider ways of reasoning
and thinking that in their view might be a founda-
tion on which to develop algebraic thinking and
reasoning. The second is to describe some instruc-
tional activities that can potentially engender such
reasoning and thinking. Here again, readers are
invited to be active participants by asking them-
selves what possibilities these instructional activi-
ties might have in their own classrooms.

Thinking That Is
Foundational to
Rlgebraic Reasoning

To explore the nature of children’s thinking, con-
sider the following example that comes from a
first-grade classroom-research study conducted by
Cobb, Whitenack, and McClain (Cobb et al., in -
press) and cited by Smith (in press) as illustrating
one kind of algebraic thinking. In the example, stu-
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[image: image2.png]dents were shown a picture of one large and one
small tree and five monkeys (see fig. 1). The
teacher explained that all the monkeys want to play
in the trees, and she asked the students to think
about the different ways that the five monkeys
could play in the two trees. The children began to
generate responses, such as that three could be in
the little tree and two in the big tree or that five
could be in the big tree and none in the little tree.
The children’s reasoning in generating these
responses might be described as primarily numeri-
cal. Their activity involved thinking of, and figur-
ing out, specific instances of how many monkeys
might be in each of the two trees. From the observ-
er’s perspective, we might say that the children
found various ways to partition the number 5 into
two parts. The teacher recorded the children’s sug-
gestions by drawing a vertical line between the
trees and writing the number of monkeys in each
tree on the corresponding side of the line, creating
a table in the process (see fig. 1). As the discussion

progressed, the teacher asked if all the possibilities
were already recorded and if a way could be found
to ensure that they had them all.

Cobb and others note that a shift in the discourse
occurred when the teacher asked this question.
Jordan explained, “See, if you had four in this [big]
tree and one in this [small] tree in here, and one in
this [big] tree and four in the [small] tree, couldn’t
be that no more.” He explained how every other
partition of 5 into two numbers could yield two
possible ways the monkeys could be in the two
trees. The various possibilities that had been sug-
gested previously by the children and recorded in
the table by the teacher emerged “as explicit
objects of discourse that could themselves be relat-
ed to each other” (Cobb et al., in press). Cobb and
his colleagues use the example to explicate shifts
in discourse, but Smith uses the example to focus
on the nature of Jordan’s thinking. Jordan was no
longer thinking about generating specific parti-
tions of 5. Neither was he checking empirically to

Overhead-projector display showing a table with students’ responses
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see if all possibilities were in the table. As Cobb
and others and Smith point out, Jordan was build-
ing an understanding of the relationship between
the possible partitionings of the monkeys and the
possible entries in the table. Because of the focus
on relationships, some would refer to Jordan’s rea-
soning as representational or algebraic. Whether
the reader concurs with calling Jordan’s thinking
“algebraic” is unimportant. The crucial point is
that Jordan’s thinking is qualitatively different
from the numerical thinking in which he and the
other children engaged initially when they gener-
ated the individual instances that first made up the
table.

Some — but not all —students in Jordan’s class
made sense of his explanation. Some children
might have been unable to reason about relation-
ships as Jordan did, and this problem might not
have engendered higher-level thinking that some
would call algebraic. This point is significant. It
once again highlights the mathematical activity of
the students and indicates that qualitative differ-
ences can occur in children’s thinking as they
attempt to solve a problem. A task in and of itself
does not elicit a particular type of thinking.
Nevertheless, as the previous example demon-
strates, opportunities for various possibilities can
be generated by the careful selection of tasks and
by the way they are developed in the classroom.
The teacher’s question “How can you be sure you
have all the possibilities?” apparently was the
impetus for Jordan’s higher-level thinking. By ask-
ing the question, the teacher initiated a change in
the focus from thinking about the various ways the
monkeys might be in the trees to reasoning about
the relationship between the various ways and the
records in the table. Jordan’s reasoning is evidence
that the shift in focus was productive for at least
one child in the class.

Promising .
(3 L3 ®
Instructional Activities

The remainder of this article describes several
problems that have been proposed by the NCTM
Algebra Working Group (1995) as potentially use-
ful in fostering elementary school students’ devel-
opment of a conceptual basis for algebraic reason-
ing. Although activities from arithmetic or data
measurement could have been chosen, these prob-
lems are set within the context of measurement. In
one sense they can be thought of as focusing on
dimension, perimeter, and area and the relation-
ships among them. The purpose is to focus on how
they might foster thinking that is foundational to
algebraic reasoning. For this reason, possible ways
that students might think about and solve the prob-

lems are included. These possible solutions and
interpretations are representative of the working
group members’ classroom experiences with the
problems.

The first problem described is intended for the
early primary grades and is designed to encourage
students to investigate various rectangles and their
areas where one dimension of the rectangle is
fixed.

Building-rectangles problem: Use some of
your (square) tiles to make a rectangle with a
base of 2.

The teacher might pose these questions:

« Did you all make the same rectangle?

« How many tiles did you use?

« How did you figure it out?

« What is the height of your rectangle?

»How would you build a rectangle that uses
twenty-two tiles?

« Can you figure out how high it will be without
building it?

«If you know how many tiles are in a rectangle
with a base of 2, can you figure out high it is?

« If you know how high you want a rectangle to be,
can you figure out how many tiles you will need?

To find the number of tiles used, which repre-
sents the area, some children count them one by
one. Others count by twos. Still others count the
number of tiles in one column and double the num-
ber. These strategies reflect the children’s own
understanding of, and facility with, number. To
answer the follow-up questions, some children
begin to reason in a more general way about the
relationship between height and total number of
tiles, or area. These questions shift the focus from
making the rectangle to reasoning about how the
dimensions are relevant.

For our purposes, the crucial feature of the
instructional activity is the set of follow-up ques-
tions that encourage the children to go beyond
building rectangles and even beyond producing
numerical answers to questions about the dimen-
sions to reasoning about the dimensions and about
the relationships between them. The teacher can
facilitate the discussion by introducing various
ways of recording children’s rectangles, such as by
making a table or by using grid paper.

The next problem, which is intended for the
intermediate grades, involves working with rela-
tionships and constraints. Like the first problem,
students are asked to construct rectangular shapes
but with a fixed perimeter.

Rectangular-pen problem: Charmaine wants
to build a rectangular pen for her pet using 26
feet of fence. Help her figure out some possible
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[image: image4.png]pens she might build. Record your results so that
someone else can figure out how you thought
about the problem. String, pipe cleaners, and
grid paper are materials that are available for
you to use if you choose.

These questions might be posed:

» What different rectangular pens did you find?

» How did you record your results?

« How does the shape of the pen change by making
one side of the pen longer or shorter?

« Have you found all the possibilities?

« How can you be sure?

To find some of the possible rectangular pens,
some students make a twenty-six-inch length from
pipe cleaners and bend it to form various rectan-
gles. Some record their results by tracing around
each rectangle on a piece of paper. After making
several rectangles, some of these students make
additional rectangles by first folding the
pipe-cleaner length in half, then partitioning and
folding the first half, and finally folding the other
half to complete the rectangle (see fig. 2). Some
students think about how many pens are possible
by reasoning about possible ways to partition the
pipe-cleaner length. Other students use grid paper
to draw rectangles with perimeter of twenty-six

Diagram depicting reasoning by
partitioning and folding a length
of pipe cleaner
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units. The thinking of some of these students is
constrained by the lines on the grid paper. As a
result they use only integral values for the length
and width. Some students record their results only
with their drawings on the grid paper. Others make
lists of the pairs of dimensions. Very young stu-
dents use square tiles, arranging them in rectangles
and verifying the perimeter by counting and mak-
ing adjustments as needed.

By using such materials as string and pipe clean-
ers, students can reason about partitioning a length
without thinking numerically. By bending pipe
cleaners and folding string, students can reason
about how the length and width of the rectangles
are related. Reasoning in this way about quantities,
such as length and width, without having specific
numerical values in mind, is foundational to alge-
braic reasoning. As students consider the question
of all possible rectangles, they may abstract pat-
terns in their own reasoning and use tables, graphs,
and literal symbols to express their thinking. The
teacher plays a crucial role in assisting students to
develop ways to notate and record their thinking
that are consistent with conventional methods. For
example, students may reason that the width and
the length must add to 13 or that the width can be
determined by subtracting the length from 13.
With the teacher’s help, they can develop ways to
notate this reasoning, including the use of such
standard symbolic means as W + L = 13 or W =
13 — L. By introducing methods of recording and
organizing as a topic of discussion, the teacher
helps students focus explicitly on these means of
representation. In this way, representing, notating,
and symbolizing, all of which are foundational to
algebra, can emerge as the instructional activity
unfolds in the classroom.

The problem can be extended by asking which
pen provides the most area for the pet. Discussing
the maximum area encourages students to reflect
on the range of possible rectangles. In some class-
es, questions of nonintegral values for the length
and width will arise. Students can be encouraged
to draw graphs and to reason from their drawings
in ways appropriate to their grade levels. Some
students will reason algebraically using a diagram
of a rectangle as the basis of their reasoning.

This discussion illustrates that the initial choice
of problem is only one of the relevant factors in the
instructional activity that develops. Teacher ques-
tions, student solutions, and attempts to follow up
on either or both are central to how the instruc-
tional activity is realized in action.

°
Conclusions
As we have illustrated, developing the foundations
for algebraic reasoning in the elementary grades

Nonnumeri-
cal reason-
ing about
quantities
is founda-
tional to
algebraic

reasoning





[image: image5.png]can be accomplished through activities that
encourage children to move beyond numerical rea-
soning to more general reasoning about relation-
ships, quantity, and ways of notating and symbol-
izing, to name but a few. In this way teachers can
contribute to the emerging view of algebra for all,
K-12, and to the preparation of our students for
the twenty-first century.
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ou may be surprised to learn that most first

graders can solve for x in such problems as

2x + 1 =21.Tknow so because they do it in
my classroom daily, just not in the abstract form of
x’s and y’s. Even though primary-grade students may
lack the formal level of thinking required to “effi-
ciently” solve equations, algebraic reasoning is still
possible when approached in less sterile and more
practical ways. This article shares teaching
experiences that show just that outcome: when
an equation is redesigned into a problem-
solving story or a logic puzzle or is in some
other way wrapped in meaning, even six-year-
olds know enough mathematics to solve it.
Equations are mathematically pure by nature;

Robert B. Femiano

Robert Femiano, rbfemiano @seattleschools.org, teaches at Arbor Heights Elementary School
in Seattle and is an adjunct faculty member with Seattle Pacific University. He is most inter-
ested in making mathematics the favorite subject of every child in his school. =

444

Copyright © 2003 The National Council of Teachers of Mathematics, Inc. www.nctm.org. All rights reserved.
This material may not be copied or distributed electronically or in any other format without written permission from NCTM.

thus, they are devoid of context. This starkness has
its advantages but not for concrete learners. To
them, manipulating equations is likely a rote—and
joyless—procedure because true understanding is
absent. Once equations are transformed into con-
crete problems, however, amazing learning takes
place because children can now make sense of the
problem; that is, they know what is being asked and
can understand the role of an unknown. This under-
standing allows them to logically generate a solu-
tion plan that is based on reasoning rather than on
memorized methods. In other words, when students
understand the question behind the problem or puz-
zle, they can use natural thinking skills to formulate
solutions, instead of relying on the recall of meth-
ods and invariable procedures or algorithms. Stu-
dents can now bridge their concrete ways of think-
ing with the abstractness of equations.

This instructional shift away from memoriza-
tion has several benefits. First, it allows even those
students who do not have good skills or strong sup-
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[image: image7.png]port at home to participate; indeed, the children
who are labeled low achievers constantly surprise
me with their eagerness and their strong thinking
abilities. Similarly, the increased focus on problem
solving helps me address the gender equity issue.
This benefit may be attributed to the language and
“socialness” of problem solving, but in any event,
girls appear to be just as motivated as boys and
equally successful in finding solutions.

Why Use Problem Solving?
NCTM’s Principles and Standards for School
Mathematics describes problem solving as a
“major means for developing mathematical knowl-
edge” (2000, p. 116). A year earlier, in NCTM’s
yearbook on mathematical reasoning, Schifter
made a strong argument for the value of early alge-
braic thinking in K-6 classrooms as long as the
curriculum builds on students’ mathematical ideas
without separating them from their own sense-
making abilities (NCTM 1999).

In my classroom, mathematics is simply prob-
lem solving in one form or another, whether the
explorations are focused on algebra, geometry,
measurement, or data. To foster mathematical
thinking, 1 pose problems that provide numerous
reasoning and thinking opportunities. The prob-
lems are presented in a friendly and supportive
environment that encourages risk taking and in
which mistakes are viewed as opportunities for
learning. When young children are placed in a
failure-free, fear-free environment, they enjoy the
puzzlelike nature of algebraic problems. Their
enthusiasm also serves to transform mathematics
from a passive to an active subject, thereby increas-
ing student participation.

Problem solving is a natural vehicle to help
young children uncover vital mathematical rela-
tionships and concepts by building on their own
knowledge bases. Because problems are frequently
solvable in more than one way, students can begin
with knowledge they already have and explore
from there. Furthermore, problem solving encour-
ages children to rely on their own thinking abili-
ties, thereby helping improve their perceptions of
themselves as mathematicians. At a minimum, this
confidence boost should serve to inhibit mathemat-
ics phobias; better still, perhaps it will be the cata-
lyst for a mathematics-based career. Either way,
helping students feel comfortable with mathemat-
ics is a worthwhile goal and a lifelong gift.

Three forms of problem solving are used in my
classroom—story problems, equations with cards,
and balancing problems—each of which is
designed to promote some algebraic reasoning
skills. These activities help students understand
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concepts, such as equality; explore properties, such
as the commutative property; learn mathematical
language by using such terms as greater than; and
sharpen computational skills. In this article, each
of these problems is represented by equations,
which are given solely to clarify the problems for
readers. Equations are rarely used in the classroom
because they seem unnecessary and too limiting to
the thinking of the primary-age child. Equations
may be used, however, to record what some chil-
dren say as they explain their answers. For exam-
ple, I may say aloud to the group, “He said, “What
do I need to add to 5 to make 92" which can look
like this when it is written down: (0 +5=9"

Story Problems

Perhaps the most powerful way for elementary
school students to solve equations is by putting
words to them. Revisiting the opening equation,
2x + 1 = 21, suppose that the same question was
framed in a word problem, such as “Double me,
then add 1, and you will get 21. What number am
1?7 Now, the problem becomes less abstract and
much more approachable; at least, it lends itself to

445




[image: image8.png]How the problem was solved

Equation

Story Problem

Strategy

xX+5=17

Bobby read some books, then
said, “If | read 5 more, | will
have read 17” How many
books has he read?

Take seventeen counters; sep-
arate five for the books that
Bobby needs to read, and
count what remains as the
number that he has already
read.

x—1/2x=

35

If you spent half your money
but still had 35¢, what 4 coins
did you begin with?

Make a pile of thirty-five with
base-ten blocks, then add
another pile of thirty-five to
make equal halves. Then they
can find how many they have
altogether. Some students
might try to find four plastic
coins to make 70¢. Depending
on the student, | might “require”
him or her to find a second
answer.

X+ y=20;

xX—y-6

What two numbers give you 20
when added but, when sub-
tracted, give you 6?

Take twenty counters and
make two rows, one of which
has six more than the other.

X+x+3=21

If Jack fetched 3 more pails of
water than Jill did, and
together, they carried 21 buck-
ets, how many pails did each

Take twenty-one blocks and
make two lines, one of which
has three more than the other.

fetch?

guess-and-check techniques. I have often seen sec-
ond graders solve this problem by making a table
or chart or by first subtracting the 1 from 21, then
breaking the 20 into two groups. In the latter solu-
tion, students reverse the steps used to state the
problem and, in doing so, display a textbook exam-
ple of how to isolate the unknown to one side of the
equation before solving! The same equation could
be embodied in many forms, such as “Mom and
Dad both made the same number of cookies. Then
baby made 1. Altogether, they had 21. How many
cookies did Dad make?” I commonly use the stu-
dents” names in problems; for example, “If
Ramona had the same number of pennies in both
pockets but then found one more, making a total of
21 cents, how many pennies were in each pocket?”

Here is another typical Algebra I problem: Find
ygivenx + 3 =20 and x + 5 = y. Again, in this form,
the problem would be too daunting for most twelve-
year-olds, but when reformatted into words, even a
first grader can reason it out. For example, the prob-
lem might read, “Margo will be 20 years old in 3
years, and her brother, Dominic, is 5 years older
than Margo. How old is Dominic?”” Given counters
and encouragement, primary-grade children will be
able to master the thinking necessary to find a solu-

tion, and along the way, they will continue to
explore number properties and concepts and learn
mathematical vocabulary in a natural context.

The following examples are designed for the
multiage group that I teach, which includes first
through third grades. Exposing students to these
types of problems, not just once but repeatedly
throughout the year, ensures success. Repeated
exposures also give me the chance to change the
numbers in a way that encourages students to
develop more efficient or sophisticated strategies
and to formulate generalizations. Other adaptations
include using fractions, writing more complex
equations, or introducing new terms, such as con-
secutive numbers. In figure 1, the story problems
are similar to those that my students might find on
the chalkboard when they arrive at school. Again,
the equation given here is for readers only, whereas
the explanation is a sample of how the problem has
been solved in my class.

When left on their own, students create many
ways to find the answers. At this age, the efficiency
of their procedures is not nearly as important as the
mathematical validity of their reasoning and calcu-
lations. Of course, more mature forms of mathe-
matical thinking exist, but suggesting to these
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[image: image9.png]youngsters that they leap past their own under-
standing in favor of standard symbolism and tradi-
tional algorithms seems risky. Because I want to
foster mathematical self-confidence, I value rea-
soning over efficiency. Naturally, if a student is
ready to be challenged to think in more complex
ways, I attempt to ask questions that will open up
the possibility of a shortcut. Like any teacher
watching a child draw sixty-nine tallies to repre-
sent sixty-nine, I might ask whether the student can
think of an easier way to draw sixty-nine. If my
question falls on deaf ears, I may try a direct expla-
nation involving tens and ones blocks or encourage
the child to look at how someone else in the room
does the problem using tens and ones in a drawing.
If the child still does not make the change indepen-
dently, then he or she needs to continue drawing
one-to-one correspondences until readiness devel-
ops to group in tens. At least the child is not held
back by the lack of mastery of one skill when he or
she can still think like a mathematician!

When students finish their problems, they are
required to explain what they did and justify their
reasoning, just as mathematicians do in the real
world. This step also serves as a building block in
helping my students pass a fourth-grade state
mathematics test in which written solutions are
required to demonstrate problem-solving abilities.
Sometimes, one student’s method, even if it is a
nonstandard algorithm, may lead to an all-class
announcement that someone has uncovered an
important idea, such as the fact that the order in
which three numbers are added does not affect the
sum. Rather than identify this idea as the associa-
tive property of addition, it is named after the stu-
dent, and others are encouraged to try using Ellen’s
way or Joseph’s method.

Most often, explanations involve using mathe-
matical tools, such as number lines, base-ten
blocks, counting chips, hundred grids, or calcula-
tors. Students quickly learn not to ask, “Is this the
right answer?” but rather to approach me with “T
need help” or “I'm sure I have the right answer!”
Always, they must be prepared to tell me how they
know; they learn that copying another student’s
answers is pointless.

When students are not sure where to start, I first
ask them to restate the problem, checking their
comprehension. T may suggest using lesser num-
bers in a simplified version of the problem, which
helps students focus on the process, not the impos-
ing numerals. I may direct students to look at work
from previous days to see whether they can find
similarities or may prompt them to solve the prob-
lem using charts, tables, or other techniques posted
in the room, Sometimes, we might physically act
out or draw the problem. As a last resort, students
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may be encouraged to ask others to show them how
they found their solutions. Even if we work
through the problem together, students are exposed
to fundamental and powerful problem-solving
methods that will serve them throughout their
school years and beyond.

These types of story problems are also wonder-
ful assessment opportunities; they give me insight
into how children are thinking and reveal areas of
mathematics in which students need more practice.
Furthermore, the possibilities for creating multi-
step story problems are as limitless as those for
equations; similar problems with small twists can
be used until pupils show mastery of the concept.

Equations with Cards

In algebra, a solution set is often found by balanc-
ing equations, sometimes by adding or subtracting
the same amount from both sides. One way to
develop the groundwork for such thinking is
through the use of missing addends. For example,
kindergarteners can typically solve a problem such
as the following by counting out the number of
blocks needed: “Here are five blocks. How many
more do you need to have eight?” The traditional
procedure to solve 5 + x = 8 is to subtract 5 from
each side, although this

approach is not logical

courage thinking

about missing ad-

dends is with a stan-

dard deck of playing cards, counting

aces as one and removing the face cards. Chil-

dren are cautioned to consider the number on the
card, not the color or suit. This activity connects
what children know about concrete objects with a
pictorial representation and leads to abstract think-
ing. When I first introduce the game, I gather a
group of students around me. I take the top card and
place it faceup on the rug. I then draw a second
card, secretly look at it, and place it facedown next
to the first card. I tell the students that together,
these cards will count to whatever their sum is. I
then ask, “Can we find a way to figure out what
number is on the hidden card without looking at it?”

for most children. Fur-
thermore, by finding
out the number needed L) *
to complement 5 to D
make 8, students are
working with sets and ” ’ ’
will eventually dis-
cover the possibility
of subtracting rather
than adding.
One way to en-
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The first three
cards are the same,

Four problems involving playing cards

[+[7=fid (x+7=10)
C1+[1=[e]+[6] (2x=8+6)

The first two cards are the same.

O+0+0 = O+00 3x=2p
A A

and the last two cards
are the same.

C+-0+0O0+0=0+0+ 00

Al eight cards must be different.

Three balance-pan problems

All scales are balanced. Replace the question mark with one of the choices.

(@)

oY OAA
(00 @00
o i v oy
(c) 0000 — | O
@00 Doy
AAA 2 | ®ODO
shl o

(b)

The following variation asks for a number to replace the question mark.

00 20
=

ooA 18

(©)

1 also tell students that counting on fingers is
acceptable. At first, students seem to use only trial
and error to solve these problems, often with no
foresight or hindsight. For example, they may try a

5 even if 4 is too large. After a few turns, however,
some children’s reasoning and number sense
becomes apparent. Eventually, the students uncover
many concepts, such as equality, identity element,
joining sets, and many properties, such as commu-
tative and associative, of number and set theory.

Within a few days of introducing this activity, I
begin to make the transition to paper-and-pencil
problems. Early in the first-grade year, I write on the
chalkboard such problems as those shown in figure
2. After students copy the problems into their note-
books, they use their decks of cards to find the solu-
tions. Incidentally, the lack of written words in these
problems makes them wonderful activities for non-
readers and non-English speakers to participate
equally with their classmates. Note that buying decks
of cards with different backings makes cleanup time
more manageable for teachers and students.

The last two problems in figure 2 are unique
because they have more than one solution. In alge-
bra, the variable is a fundamental idea, and such
problems are one way to expose children to it.
Another way would be to say, “I am more than 1
but less than 5. What number could I be?”

Another card game that I use quite often is
called “salute” (Kamii 1988). This game requires
three players and a deck of cards with the face
cards removed. Shuffle and divide the deck into
two equal piles. The third player is the referee. The
two opposing players each draw a card from their
facedown piles and, without looking at the card,
place it on their foreheads with the number facing
out, in a salute fashion. The referee adds the num-
bers and announces the total. Each player, seeing
what the opponent has, tries to be the first to shout
the number on his or her card. Because players get
only one try, they have to think carefully. Tie
answers, determined by the referee, result in cards’
being returned to the bottom of the players’ decks.
The winner collects both cards, and the game con-
tinues until one player wins all the cards.

Balancing Problems

Simultaneous equations are basic to algebra and
involve dual unknowns that are dependent on each
other, such as the example cited previously in the
brother-sister age problem. One way to solve these
equations is to use substitutions, in which the value
of one unknown, expressed in terms of the other
unknown, replaces the same variable in the second
equation. For instance, if x + 1 =y, then x + 1 could
be substituted in place of y in the second equation.
This substitution eliminates the second variable
and leaves an equation with only one unknown,
which can be solved easily. To use substitution,
however, a student’s sense of equality must be
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[image: image11.png]somewhat developed. To this end, I devised bal-
ance problems, such as the following: If ten blue
weights at 1 gram each balance a yellow weight of
10 grams and ten blue weights balance two red
weights, then will two reds balance one yellow?
Before working with these problems, students have
opportunities to use pan balances.

Sometimes, these problems are solved by elim-
inating the same amount from both sides; again,
this approach can be explored on the balance pans.
If four reds + one blue balances two yellows + one
blue, then removing the blue from both sides of the
equation will leave it unchanged. Removing some-
thing from only one side would obviously result in
an imbalance, which would not be mathematically
acceptable but might be a good launching point for
discussing inequalities. See figure 3 for a few
examples used with my second and third graders.

Conclusion
Algebraic problem solving has proven to be an
invaluable tool in helping children develop mathe-
matical and logical thinking skills. It not only
strengthens conceptual understanding but also pro-
vides many other benefits, from reducing mathe-
matics anxiety to increasing participation levels.
Furthermore, allowing children to explore and
invent mathematical procedures using their own
thinking empowers them; they come to see them-
selves as competent, confident mathematicians.
This shift in teaching, from telling to allow-
ing discovery, has made a profound difference in
how my students view mathematics. Practically
speaking, however, with large classes and
extremely diverse populations, the task of
changing curricula and methods without support
is not easy. For example, I bring in a parent
every day to help with mathematics time. I hope,
however, that this article offers some encourage-
ment for change in how we teach, because even
if our steps in this direction are small, such as
using a problem-of-the-week format, the bene-
fits are enormous: children smiling, even laugh-
ing, during mathematics time.
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any states and school districts, as
M well as Principles and Standards for

School Mathematics: Discussion Draft
(NCTM 1998), recommend that algebra be
taught in the early childhood years. Although
young children often understand much more than
traditionally thought, adults can have difficulty
conceptualizing what would constitute appropri-
ate algebra for the early childhood years. Fifteen
teachers and three university researchers are cur-
rently involved in a project to define what
algebra instruction can and should be for
young children. In this article, we discuss
the concept of equality, which is a crucial
idea for developing algebraic reasoning in
young children.
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Misconceptions about
the Equals Sign

Even though teachers frequently use the equals
sign with their students, it is interesting to explore

Karen Falkner, kfalkner@madison.k12.wi.us, is a primary-grade teacher at Lapham Elemen-
tary School, Madison, WI 53703. She is currently participating in a study of young children’s
algebraic thinking. Linda Levi, llevi@facstaff.wisc.edu, and Thomas Carpenter, tpcarpen@
" facstaff-wisc.edu, are affiliated with the Wisconsin Center for Educational Research, Madison,
WI 53706. They both study the development of young children’s algebraic thinking.

Edited by Kate Kline, kate.kline @wmich.edu, Department of Mathematics, Western Michigan
University, Kalamazoo, MI 49008. This column addresses the early childhood teacher’s need
1o support young children’s emerging mathematics understandings and skills in a context that
conforms with current knowledge about the way that young children—pre-K—K—learn mathe-
matics. Readers are encouraged to send manuscripts for this section to the editor.

Children’s
Understanding of
Equality: A Foundation
for Algebra

what children understand about equality and the
equals sign. At the start of this project, many
teachers asked their students to solve the follow-
ing problem:

8+4=0+5

At first, this problem looked trivial to many teach-
ers. One sixth-grade teacher, for example, said,
“Sure, I will help you out and give this problem to
my students, but I have no idea why this will be of
interest to you.” This teacher found that all twenty-
four of her students thought that 12 was the answer
that should go in the box. She found this result so
interesting that before we had a chance to check
back with her, she had the other sixth-grade teach-
ers at her school give this problem to their students.
As shown in table 1, all 145 sixth-grade students
given this problem thought that either 12 or 17
should go in the box.

Why did so many children have trouble with
this problem? Clearly, children have a limited
understanding of equality and the equals sign if
they think that 12 or 17 is the answer that goes in
the box. Many young children do, however, under-
stand how to model a situation that involves mak-
ing things equal. For example, Mary Jo Yttri, a
kindergarten teacher, gave her students the prob-
lem 4 + 5 =0 + 6. All the children thought that 9
should go in the box. Yttri then modeled this situa-
tion with the children. Together, they made a stack
of four cubes, then a stack of five cubes. In another
space, they made stacks of nine and six cubes. Yttri
asked the children if each arrangement had the
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[image: image13.png]same number of cubes. The children knew that the
groupings did not have the same number of cubes
and were able to tell her which one had more. Sev-
eral children were able to tell the teacher how they
could make both groupings have the same number
of cubes. Even after doing this activity, however,
the children still thought that 9 should go in the box
in the equation.

This incident surprised Yttri and the researchers.
‘We had assumed that kindergarten children would
have little experience with the equals sign and would
not yet have formed the misconceptions about
equality demonstrated by older children. Even
kindergarten children, however, appear to have
enduring misconceptions about the meaning of the
equals sign that are not eliminated with one or two
examples or a simple explanation. This incident also
illustrates that children as young as kindergarten age
may have an appropriate understanding of equality
relations involving collections of objects but have
difficulty relating this understanding to symbolic
representations involving the equals sign. A con-
certed effort over an extended period of time is
required to establish appropriate notions of equality.
Teachers should also be concerned about children’s
conceptions of equality as soon as symbols for rep-
resenting number operations are introduced. Other-
wise, misconceptions about equality can become
more firmly entrenched. (See “About the Mathemat-
ics” on p. 234.)

As Behr, Erlwanger, and Nichols (1975);
Erlwanger and Berlanger (1983); and Anenz-
Ludlow and Walgamuth (1998) have documented,
children in the elementary grades generally think
that the equals sign means that they should carry
out the calculation that precedes it and that the
number after the equals sign is the answer to the
calculation. Elementary school children generally
do not see the equals sign as a symbol that
expresses the relationship “is the same as.”

Not much variety is evident in how the equals
sign is typically used in the elementary school.
Usually, the equals sign comes at the end of an

equation and only one number comes after it. With
number sentences, such as 4 + 6 = 10 or 67 — 10 —
3 = 54, the children are correct to think of the
equals sign as a signal to compute.

First and Second Grades
Karen Falkner is currently teaching a first- and
second-grade class. Children typically stay in the
class for two years. The remainder of this article
shows how the children in this class have pro-
gressed in their understanding of equality over the
past year-and-a-half.

For some time, solving story problems has
been an integral part of mathematics instruction
in Falkner’s class. Students are regularly asked
to write number sentences that show how they
solved story problems. Falkner expected her stu-
dents to be successful, therefore, when she first
asked them to solve the number sentence 8 + 4 =
[J + 5. To her surprise, the students answered the
problem just as research indicated that they
would. Most put 12 in the box, and some
extended the sentence by adding = 17. The dis-
cussion that followed was interesting. Most said
that 12 should go in the box because “eight plus
four equals twelve.” The following excerpt illus-
trates the class discussion that took place after
students had worked on the problem.

Falkner. Is 8 + 4 the same as 12 + 57

Anna. No.

Falkner. Then why did you put 12 in the box?

Anna. Because 8 + 4 equals 12. See? [Counting
on her fingers] It’s 8, 9, 10, 11, 12. [Many children
nod their heads in agreement.]

Falkner. Did anyone get another answer?

Adam. Itis 7.

Falkner. Why?

Adam. Because you have to have the same
amount on each side of the equals sign. That’s what
the equals sign means.

Falkner. 1 see. Adam, would you say that again?

-~
(11§ Percent of children offering various solutionsto 8 + 4 =1+ 5
-l
0 Answers Given Number of
ﬁ Grade 7 12 17 12 and 17 Other Children
1 0 79 7 0 14 42
1and2 6 54 20 0 20 84
2 6 55 10 14 15 174
3 10 60 20 5 5 208
4 7 9 44 30 11 57
5 7 48 45 0 0 42
6 0 84 14 2 0 145
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considering Adam a class leader, listen attentively.]

Falkner. [Gesturing at the number sentence on
the chalkboard.] So, Adam, you say that the equals
sign means that however much something is on one
side of the equals sign, the same amount has to be
on the other side of the equals sign. [Looking at the
rest of the class] What do you think about what
Adam said?

Anna. Yes, but it has to be 12, because that is
what 8 + 4 equals.

Dan. No, Adam is right. Whatever is one side of
the equals sign has to equal what is on the other
side: 8 + 4 =12 and 7 + 5 =12, so 7 goes in the box.

The class wrestled with this problem for some
time. The equals sign is a convention, the symbol
chosen by mathematicians to represent the notion
of equality. Because no logical reason exists that
the equals sign does not mean “compute,” Falkner
thought that it was appropriate to tell the class that
she agreed with Adam and Dan. Telling the class
what the equals sign meant was not, however, suf-
ficient for many children to be able to adopt the
standard use of the sign.

Falkner then chose to develop her students’
understanding of the equals sign through discus-
sion of true and false number sentences; this dis-
cussion builds on the work of Robert Davis (1964).
Falkner presented number sentences, similar to the

following, to her students and asked whether the
number sentences were true or false.

4+5=9 12-5=9 7=3+4
8+2=10+4 7+4=15-4 8=8

The children’s reactions were interesting. All
agreed that the first sentence was true and that the
second was false. They could prove these asser-
tions by a number of means. They were less sure
about the remaining sentences.

Falkner. What about this sentence? 7 =3 + 4. Is
it true or false? [Lots of squirming around, dis-
tressed faces, and muttering from the class]

Gretchen. Yes, 3 + 4 does equal 7.

Ned. But the sentence is wrong.

Anna. It’s backward.

Falkner. But Adam has told us that the equals
sign means that the quantity on each side of it has
to be equal. Is that true here?

Anna. Yes, but it’s the wrong way.

Falkner. Let’s try this. [She models the prob-
lem, giving one child seven Unifix cubes in a
stack and asking him to stand on one side of her.
She gives another child a stack of four Unifix
cubes for one hand and a stack of three for the
other hand. That child stands on the other side of
her.] Now, do these two children have the same
number of cubes?

Class. Yes.

About the Mathematics

Children must understand that equality is a relationship that
expresses the idea that two mathematical expressions hold the
same value. It is important for children to understand this idea
for two reasons. First, children need this understanding to think
about relationships expressed by number sentences. For exam-
ple, the number sentence 7 + 8 = 7 + 7 + 1 expresses a mathe-
matical relationship that is central to arithmetic. When a child
says, “I don’t remember what 7 plus 8 is, but I do know that 7
plus 7 is 14 and then 1 more would make 15,” he or she is
explaining a very important relationship that is expressed by
that number sentence. Children who understand equality will
have a way of representing such arithmetic ideas; thus they will
be able to communicate and further reflect on these ideas. A
child who has many opportunities to express and reflect on such
number sentences as 17 — 9 = 17 — 10 + 1 might be able to use
the same mathematical principle to solve more difficult prob-
lems, such as 45 — 18, by expressing 45 — 18 = 45 — 20 + 2. This
example shows the advantages of integrating the teaching of
arithmetic with the teaching of algebra. By doing so, teachers
can help children increase their understanding of arithmetic at
the same time that they learn algebraic concepts.

234

A second reason that understanding equality as a relation-
ship is important is that a lack of such understanding is one of
the major stumbling blocks for students when they move from
arithmetic to algebra (Kieran 1981; Matz 1982). Consider, for
example, the equation 4x + 27 = 87. How do you start solving
this equation? Your first step probably involves subtracting 27
from 87. Why may we do so? We may do so because we sub-
tract 27 from both sides of the equation. If the equals sign sig-
nifies a relationship between two expressions, it makes sense
that if two quantities are equal, then 27 less of the first quan-
tity must equal 27 less of the second quantity. What about chil-
dren who think that the equals sign means that they should do
something? What chance do they have of being able to under-
stand the reason that subtracting 27 from both sides of an
equation maintains the equality relationship? These students
can only try to memorize a series of rules for solving equa-
tions. Because such rules are not embedded in understanding,
students are highly likely to remember them incorrectly and
not be able to apply them flexibly. For these reasons, children
must understand that equality is a relationship rather than a
signal to do something.
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[image: image15.png]Falkner. Does it make any difference which side
of me they stand on? [She asks them to change
places, which they do.]

Class. No, but . . . .

As you can imagine, the fourth number sentence
caused confusion for many children. Some chil-
dren thought the number sentence was true because
8 + 2 does equal 10. Children who had a firm
understanding of equality were able to explain that
this number sentence was not true because 8 + 2 is
10 and 10 + 4 is 14 and 10 is not the same as 14.

When Falkner came to the final sentence, 8 = 8,
the class was quite disturbed. Anna spoke for the
students when she said, “Well, yes, eight equals
eight, but you just shouldn’t write it that way.” In
the few remaining weeks of school, Falkner con-
tinued to give problems to her students with the
equals sign in various locations.

The Next Year

In the fall, Falkner posed the same problem,
8 + 4 =0 + 5, to her class. A few, but not all, of the
children who had been in the room the previous
spring correctly solved the problem. Many new
first graders proudly put 12 in the box; others
looked at the sentence in confusion and asked for
help. A discussion similar to the one in the spring
ensued. This time, however, a few children under-
stood the notion of equality and enthusiastically
explained why the number 7 belonged in the box.
Lillie gave the most spirited explanation. “The
equals sign means that it has to be even. The
amount has to be the same on each side of the
equals sign. [Gesturing with her hands] It is just
like a teeter-totter. It has to be level.”

This class discussion was the first of several
about similar open number sentences. Each dis-
cussion had its doubters, as well as children who
once again explained the idea that each side of the
equals sign had to “equal” the same amount. As
Falkner listened to the discussions, noted who
was talking, and looked at facial expressions, it
appeared that the children were beginning to
grasp this notion of equality but that the concept
was not easily or quickly understood. Falkner was
convinced that the notion of equality would take
time for all the children to understand, and she
returned to it often as the year progressed.

Falkner integrated discussion of equality
throughout the school year in two ways. First,
she continued to present open number sentences
in which she varied the location of the unknown.
Some examples of these open number sentences
included the following: [0 =9 + 5,7 + 8 =0 +
10, and 7 + O = 6 + 4. Second, she presented
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true and false number sentences, such as those in
the examples, to encourage children to reflect on
the meaning of the equals sign. She also had the
children write their own true and false number
sentences. The tasks that Falkner used to build
children’s understanding of equality were also
tasks that build their understanding of number
operations.

As the year progressed, more and more children
began to understand equality. In March, the class
had the following discussion:

Falkner. Look at this number sentence: 8 + 9 =
[ + 10. What should go in the box?

Carrie. It should be 17.

Skip. But 8 + 9 would equal 17, so 17 + 10
would equal 27, so 17 isn’t OK to put in the box.

Myra. Right; 17 + 10 does not equal 17.

Ned. 1 think that 7 goes in the box; 7 + 10 is 17
and 8 + 9 is 17. Both sides are even. [The class gen-
erally agrees, although Carrie is
not yet convinced.]

Faulkner. Think about what
we know about the equals sign.
Look at this number sentence:

4898 + 3 = 4897 + [J. Can you just shouldn’t write

figure this one out without even
doing the addition?

Larry. T think that 4 goes in
the box; 4897 is 1 down from
4898, so you need to add 1 more to 3.

Falkner. Did anyone do it a different way?
[Children shake their heads. In general, the class
agrees that Larry’s way gives the right answer and
is easy.]

Such discussions about number sentences gave
the children an important context for discussing
equality throughout the school year. As the year
progressed, discussions about equality became
integrated with discussions about other algebraic
arithmetic concepts. In the following example, the
children discuss a much more sophisticated prob-
lem that involves an understanding of variables
and operations, as well as equality.

Falkner asked the class to look at the sentence
a=b + 2. She said that the sentence was true and
asked the class which was larger, a or b? Children
who think of the equals sign as a signal to do
something would have trouble with this problem.
Because 2 is added to b and nothing is added to a,
they might think that b is larger. The class first
agreed that ¢ and b were symbols for variables,
just as a box or triangle were. The class then
quickly agreed that @ was larger, and their argu-
ments for that position clearly indicate a sophisti-
cated understanding of equality.

“Yes, eight equals
eight, but you

it that way”
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Falkner. Why do you think that a is larger?

Anna. They split the b and 2 apart; a brings
them together.

Jerry. 1 think a [is larger]. That plus 2 is part of a.

Myra. Yes, a has to be bigger because whatever
b + 2 is has to be higher than b, because you com-
bine them.

Anna. Right; a has the + 2 in it and b doesn’t.

Lillie. Together they have to be the same; b + 2
has to be the same as a.

Conclusion

Discussions such as these, which involved an ever-
growing number of children, indicate that the chil-
dren have learned to see the equals sign as a sym-
bol describing a relationship rather than as a “do it”
sign. Because this article was written before the
end of the school year, we have not collected sum-
mary data on children’s understanding of the prob-
lem 8 + 4 = [J + 5 in this class. In a pilot study
involving a similar first- and second-grade class-
room in the same town, however, we found that at
the end of the year, fourteen out of sixteen children
correctly answered that 7 should go in the box.

As we reflect on our introduction of the notion of
equality and the equals sign to this class and others,
we continue to be amazed at the interest and excite-
ment that the children bring to the discussions. Lillie
uses her teeter-totter metaphor with the enthusiasm
of a child ready to play on one. Skip is genuinely out-
raged that anyone should fill in a blank so that an
equation reads 17 = 27. These are not the bored com-
ments of children looking forward to recess but the
excited contributions of children who are exploring a
new world of thinking and communicating mathe-
matically and who are enjoying the power of that
new knowledge. These children are developing an
understanding of equality as they learn about num-
bers and operations. This understanding will allow
them to reflect on equations and will lay a firm foun-
dation for later learning of algebra.
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Geometry and Op Art
(Continued from page 224)

framework for learning to identify the various geo-
metric lines and shapes, developing an op-art slide
show gives students the opportunity to apply and
reinforce their understanding of these concepts.

The class referred throughout the school year to
the geometric concepts and language learned in
this unit: “Were there any parallel lines in your op-
art?” “Think about your op-art. Do you remember
if there were any perpendicular lines?” The slide
show furnished a frame of reference whenever a
geometric term was used and some students
needed to revisit the concept. For a teacher, the
ability to refer to a commonly shared interest is a
powerful way to clarify concepts. I could quickly
and easily draw the frame of a finished slide on the
chalkboard, and the students could clarify the
point of interest. The slide-show activity proved to
be a lasting influence throughout the year.
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Experiences with Patterning

Joan Ferrini-Mundy, Glenda Lappan, and

Elizabeth Phillips

O ver the past decade we have learned that
children are capable of mathematical insights
and mathematical invention that exceed our expec-
tations. We have also learned that we, as teachers,
contribute to—or suppress—this insight and inven-
tiveness in our students by the choices we make.
We choose the mathematical tasks, the questions,
and the expectations for how students are to inter-
act with those tasks and with one another around
those tasks. The question of the expectations we
knowingly or unknowingly set for our students is
nowhere more crucial than in the gatekeeper area
called algebra. In this article we will share an ex-
ample of how algebraic thinking and reasoning
might be extended over grades K-6. We hope to
stimulate readers to think with us about how we
can search for ways to foster algebraic thinking
and reasoning by the questions we regularly ask
our students.
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Although we have no easy answer as to what con-
stitutes algebra or algebraic thinking and reason-
ing, we can be guided by the view of algebra that
emerges from an examination of the NCTM’s Cur-
riculum and Evaluation Standards for School
Mathematics (1989). Standard 13 in the K—4 sec-
tion, titled Patterns and Relationships, and Stan-
dards 8 and 9 in the 5-8 section, titled Patterns and
Functions, and Algebra, respectively, suggest that
the study of patterns is a productive way of devel-
oping algebraic reasoning in the elementary
grades. Current curriculum reform efforts and re-
search in learning contend that observations of
patterns and relationships lie at the heart of acquir-
ing deep understanding in many areas of mathe-
matics—algebra and function in particular (Steen
1988). When students are presented with interest-
ing problems in context, they observe patterns and
relationships: they conjecture, test, discuss, verbal-
ize, generalize, and represent these patterns and
relationships. Generalizing and representing pat-
terns are reflected in the example that follows.

An Example for Developing
Algebraic Thinking

The following situation was adapted from the
NCTM’s Algebra Working Group (1995). This situa-
tion offers algebraic explorations in grade K-8 or
beyond.
Tat Ming is designing square swimming pools. Each
pool has a square center that is the area of the
water. Tat Ming uses blue tiles to represent the




Source :
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[image: image18.png]water. Around each pool there is a border of white
tiles. Here are pictures of the three smallest square
pools that he can design with blue tiles for the inte-
rior and white tiles for the border. (See fig. 1.)

Pool | Pool 2 Pool 3

Fig. 1. Swimming pools with borders

What patterns, conjectures, and questions will
children find as they explore this situation? Where
is the algebra? Let us think about tasks and ques-
tions that would fit the various grade levels K—-6
The intent of each question is to prompt students
to look for patterns among the variables, make
conjectures, provide reasons for their conjectures,
and represent their patterns and reasoning. The
questions and grade levels are only suggestions.
Children will generate their own ideas and will
pursue their own interests, using this situation as a
starting point.

Grades K-2

Kindergarten children will be interested in the col-
ors and in counting the tiles. Two kinds of tiles are
used, and the number of each is not necessarily
the same. Let us focus on beginning relationships
between the numbers of blue and white tiles.

e For each square pool, sort the tiles into
blue tiles for the water and white tiles for
the border.

e Count how many tiles are in each pile.

e Are there more blue tiles than white tiles?

Next we take the problem a bit further by looking
at the pattern in the blue-tile squares alone.

Here are pictures of the three smallest squares that
Tat Ming has designed for the water. (See fig. 2.)

e Build each of the three blue squares. How
many blue tiles are in each square?

e Build the next-biggest square that you can
make out of the blue tiles. Then build the
next. Count the squares in each.

e What patterns do you see?
e What is a square?

Here we can return to the original setting and look
at the patterns in the two kinds of tiles in figure 1.

e Build the three pools using blue and white
tiles to show the water and the border tiles.
Record the information in a table. (See table
1)

e How many tiles will be in the next-largest
pool? Check your answer by building the
square.

e Describe your methods for counting the dif-
ferent tiles.

e What patterns do you see?

Blue square |

Blue square 2

Blue square 3

Fig. 2. The pool without borders

Table 1
Organizing the Data

Pool Number | Number of | Number of | Total Number of
Blue Tiles |White Tiles | Blue and White Tiles

Looking into the Classroom for
Grades K-2

The beginning questions engage students in sorting
and counting the blue and white tiles. This activity
helps them to look at the relationship between the
numbers of blue and of white tiles. Students might
observe that the first three pools have more white
tiles than blue tiles. The teacher may ask if this sit-
uation is always true and encourage the students to
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[image: image19.png]build the next-larger pool. This pool contains more
blue tiles than white tiles. At this level, students
represent their thinking and conjectures with ob-
jects that are concrete in nature.

In a first-grade class, some students focus on the
blue tiles and what it means to be square. They
may notice that there are as many rows as
columns in the figures. Some may find convenient
ways to step-count to find the number of tiles:
“two, four” or “three, six, nine.” Some students
may begin to guess the number of tiles in the
next-larger blue square. The teacher can follow
these observations by asking students how many
tiles are on each edge of the blue square. Students
are beginning to see a connection between the
number of tiles needed to build a square and the
length of its edge. Their observations are made
and checked using the tiles.

In a second-grade class, students begin to orga-
nize their data into a table. They use newly de-
veloped computational skills to find ways to mul-
tiply and add.

Grace, a second grader, at first attended only to
the overall size of the squares, not to the differ-
ences in color. In exploring this situation, Grace
worked with the teacher to reach a definition of a
square. This transcription illustrates the tentative-
ness of the student’s concept of square and her
need to work with concrete materials to help her-
self think about the concept. Working in such a
relatively open-ended setting can often reveal un-
expected student thinking about concepts that we
assume students understand thoroughly.

T: Why do you call it a square? What's a
square to you?

G: A block.

T: If it were longer down like this, would

it still be a square?

No, it would turn into a rectangle.

So what makes it a square?

That it’s not as far down as a rectangle.

b BT

Is there anything else about the sides?
How long is this side?

Three squares.
How long is this side?

Three squares.

qQ N9

So what is a square?
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G: Can I try something? I'm putting out
three to see if I can scramble them
around and make a square. [Grace is
working with three unit squares and
trying to build a square. Notice that the
teacher was trying to draw Grace’s at-
tention to the equality of the sides. But,
not unexpectedly, she became inter-
ested instead in the number 3 and its
relationship to the square.]

T: A square out of three? [Grace notices
that she will need four squares to make
a square and builds it.]

T: How can you be sure it’s a square?

G: You can, because all the sides are the
same length.

She was also very interested in counting the num-
ber of small tiles in each pool. She counted by
threes for pool 1, by fours for pool 2, by fives for
pool 3, and was able to predict the total number of
squares in the fourth pool by intuitively applying
the associative property of addition to compute 6
X 6 as follows:

6X6=[6+6)+G+6)]+(2X6)
=(12+12) + 12
=24+12=136
Grace was quite intrigued by the prediction and
computed the number of tiles in the seventh pool.
TXT=T+D+T+D+T+DI+7
=14+ 14+14) +7

Fig. 3. Grace builds a square.




[image: image20.png]Grace was searching for a way to find the total
number of squares in a pool. This example illus-
trates an aspect of algebra that involves developing
and generalizing algorithms.

She also filled out the table (see fig. 3). She no-
ticed that the four corners would always be pre-
sent, which seemed to help her in figuring out
how to count the border. She physically moved the
corner squares away.

Grades 3-4

Using the same basic situation, we can begin to
ask questions that encourage students to reason
about the patterns in the number of blue and
white tiles for a given pool and to reason about
the number of border tiles given the number of
blue tiles and the number of blue tiles given the
number of border tiles. (See fig 1.)

e Build the first 3 pools and record the data in
a table. (See table 1.)

e Continue the table for the next 2 squares.
How do you know your answers are correct?

o If there are 32 white tiles in the border, how
many blue tiles are there? Explain how you
got your answer.

o If there are 36 blue tiles, how many white
tiles are there? Explain how you got your an-
Swer.

e Can you make a square with 49 blue tiles?
Explain why or why not.

e Can you make a square with 12 blue tiles?
Explain why or why not.

By grade 4, students are learning to make com-
parisons by looking at the fraction or proportion
that a part is of the whole. We can use a version
of our problem to give students a new context
for using fractions by drawing on patterns. (See
fig. D

e In each of the first three square pools, de-
cide what fraction of the square’s area is
blue for the water and what fraction is white
for the border.

e What patterns do you see?

e What fractions will occur in the next two
rows of the table? How do you know that
your answers are correct? (See table 2.)

Looking into the Classroom for
Grades 3-4

In grade 3, the relationship between the number
of blue tiles and that of white tiles comes back
into play. The teacher can foster the habit of look-
ing for patterns and relationships between the
variables by asking, “As the pools get larger and
larger, what happens to the number of white tiles
and the number of blue tiles?” Students may ob-
serve that both numbers are increasing but that for
the first three squares, more white tiles are found
than blue tiles.

Starting with the fifth square, more blue tiles are
seen. These observations lead to some beginning
insights into different kinds of growth patterns. As
the students look for patterns in the table, some
may observe that to get the number of white tiles
for the next square pool, you always add four.

Teachers’ questions can
foster the habit of
looking for patterns
and relationships.

Ryan, a fourth-grade student, got interested in the
patterns he could see in the table and noted, while
looking at the squares rather than the table, that “it
goes up by fours” in the border (white tiles) col-
umn. The teacher asked him why, and he pro-
vided a nice geometric explanation.

Table 2
Looking for Fraction Patterns

Total Number | Fraction of Fraction of
Pool of Blue and | Blue Tiles for | White Tiles for
Number | White Tiles the Water the Border
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[image: image21.png]The following exchange with Ryan illustrates how
he used the physical representation to account for
the pattern of “going up by fours” that he noted in
the border column of the table. At first he associ-
ates the four corners with this increment of four.
He then finds a more satisfying explanation.

T: Why does it go up by fours?

R: I think it goes up by fours because
there’s four corners in each. So if you
take them out, there’s one square on
each border [looking at first square], so
this would be four, this would be eight
.... [He decides that this explanation is
not adequate.]

7: Why does it go up by four? When it
goes by four, from the first to the sec-
ond....

R: Wait! Wait! Wait! I get it now. You see
this is four [points to the four white
squares bordering the blue in the first
pooll. Then this goes up another four
[looking at the second pooll. This has
two [referring to the side of the blue
square in the second pooll.

T: Why does it go up by four?

R: This is one [referring to the blue square
in pool 1I. It only has one white square
on each side. This has two [referring to
the side of the blue square in pool 2].
So it multiplies, I mean goes up by four
because you add a white one to each
[new] side. (See fig. 4.)

“This one is the old blue tile; the other
three are new. The squares with X are
the old border tiles, so there are four
new border tiles." —Ryan

Fig. 4. Ryan explains that the number of border tiles
increases by 4 each time.

Going from one to the next, you pick up four new
border squares because you have added four new
“outside” edges.
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Ryan was intrigued by trying to make the connec-
tions between the manipulatives and the table and
by trying to justify what he could see in the pat-
terns of the numbers with what he could do with
the squares. He had an algebraic definition for
squares—a number is square if another number,
when multiplied by itself, equals the number—as
well as a tentative geometric interpretation. In the
following sequence of dialogue with Ryan, we see
him making connections between a previous defin-
ition of square number and the physical setting.

T: Tell me about the sixth pool.

R: Pool 6 would have 8 across, so that
would be 8 times 8, or 64. The total
would be 64 [reasoning from the ma-
nipulatives].

T: How did you figure that out?

R: There would be 8 across, 8 going
down, and 8 times 8 would be 64. The
number in the border would be 28.

T: How did you figure that out?

R: ‘Cause it goes with the patterns. [Note
the ease with which he moves from the
physical materials into the table.] Then
I'm going to figure this out: 64 minus
28—whatever is left over would be the
number of blue [again, he is reasoning
from the table and using computation
to solve the problem]. Okay—36.

~

Are you pretty sure that's right?

[He checks by adding 36 and 28.]

T: Would it be a better check to make this
square, or are you pretty sure? What if
you were going to build it? If you made
a square with each side 6, would you
get 36 squares in it?

)

R: Yeah. If you use 6 ... because 6 times 6
is 36.
T: And that’s what it means to make 6

squared. Have you ever heard of 6
squared—©6 X 6?

Notice in the following dialogue the tentativeness
of Ryan’s geometric definition of a square number
and how continued exploration in this setting en-
ables him to become more consistent in using his
geometric understanding of an algebraic equation.

R: No, but I've heard of square numbers.
T: Is 36 a square number?




[image: image22.png]R: Yes.
Tell me why.

~

R: Because you can make a square with
36 squares.

T: Show me on the chart which are square
numbers.

R: [Ryan looks at the numbers in the bor-
der column to see if they are square
numbers. He tries to build a square of
area 8 and cannot.]

7: Where are the square numbers in the
table? You told me a square number
was one you could make into a square.

R: Right. So all the squares: 9, 16, 25....
Those were the squares!

Ryan’s teacher also asked questions about frac-
tions. Even though the fraction questions were
new to Ryan, he quickly made a table after the
teacher started it. The table shows the fraction of
blue squares to the total squares in the first few
figures. (See table 3.) When asked if the number of
blue tiles would be half the total tiles, he said,
“Well, it won’t be half blue until the border and the
number of blues are the same.” He looked at the
table and noted that it was close in the fifth square
(25 out of 49) but not equal. Ryan is beginning to
see patterns in equivalent fractions. (See fig. 5.)

Ryan also is beginning to see that the linear pat-
tern of the white tiles is overtaken by the qua-
dratic pattern of the blue tiles even though he

Fig. 5. Ryan completes his table.

does not know the names for these patterns of
growth. Both Grace and Ryan used a lot of com-
putation in the process of looking for patterns.
Grace added and counted in multiples, and Ryan
multiplied and subtracted.

Table 3
Ryan’s Fraction Table
1st 119
Ind 14 (f out of 16)
3rd 9/25
tth 16/36
Grades 5-6

In grade 5, we can use new ways to represent the
relationships between the number of tiles of each
color and the number of the square pools. We can
begin to make the emphasis on function more ex-
plicit. (See fig. 1.)

e Make a table showing the numbers of blue
tiles for water and white tiles for the border
for the first six square pools.

e What are the variables in the problem? How
are they related? How can you describe this
relationship in words?

e Make a graph that shows the number of blue
tiles in each square pool. Make a graph that
shows the number of white tiles in each
square pool.

e As the number of the pool increases, how
does the number of white tiles change? How
does the number of blue tiles change? How
does this relationship show up in a table and
in the graph?

e Use your graph to find the number of blue
tiles in the seventh square.

e Can there ever be a border for a square pool
with exactly twenty-five white tiles? Explain
why or why not.

Next we can increase the demand of the problem
so that students will look for patterns and make
generalizations to help with predicting what will
happen in the case of a very large pool. (See fig 1.)

e Find the number of blue (white) tiles in the
10th pool. The 25th pool. The 100th pool.
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[image: image23.png]e If there are 144 blue squares, what is the side
length of the square pool including the bor-
der? How many white tiles are needed for
the border?

Looking into the Classroom for
Grades 5-6

Some students continue to build the squares using
tiles, and they notice relationships between the
numbers of blue and border tiles as they build
and then record their data in a table. Some stu-
dents find that using grid paper is helpful. For
some students, the act of building or drawing the
pools suggests the relationship between the num-
ber of blue and the number of white tiles. The
number of white tiles is four times the number of
blue tiles on a side plus four for the four corners.
Some students may use a table to find the number
of blue or white tiles in the 10th pool. But some
students begin to reason about the patterns. “In
the 10th pool, the square formed by the blue tiles
isa 10 X 10 square, so there are 100 blue tiles.
There are 144 tiles, so 144 total tiles minus 100
blue tiles equals 44 white tiles.” Some students
may first reason about the number of white tiles,
whereas other students may draw the 10th pool
and reason from the picture. As they continue to
explore these problems, they begin to notice other
patterns. Some notice that the number of white
tiles will always be a multiple of 4. Some students
question whether every multiple of 4 is a white-
tile total (see fig. 6).

After discussing the patterns in the table, the
teacher suggests that the class explore the graphs
of these patterns. The graphs suggest that the rela-
tionship between the number of the square pool

4x2+4

Fig. 6. The number of white tiles is always a multiple of 4.
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Fig. 7. A graph of the white tiles for each pool

and the number of white tiles can be represented
by a straight line, and that the number of the
square pool and the number of blue tiles lie on a
curved line. In later grades the first pattern is
called a linear function, and the latter pattern is
called a quadratic function. The students can use
the graph to find the number of white tiles (see fig.
7) or of blue tiles (see fig. 8) given the pool num-
ber, and, conversely, given the number of white
tiles or blue tiles, they can find the pool number.
By graphing the white- and blue-tile patterns on
the same grid, students can use the graphs to rea-
son about when the two patterns are equal or
when one is greater than the other. (See fig. 9.)

Where Is the Algebra?

Throughout the grade-level examples of versions
of the pool-design problem, children are being
challenged to observe patterns in the growth of the
numbers of blue tiles and white tiles needed to
make the next square pool and to build connec-
tions between the physical representations and
their verbal descriptions. This activity involves an
informal interaction with variables. In the early
grades, the focus is on the number of each kind of
tile and which is more. Even here the problem has
the potential to challenge each child at his or her
level of interest and insight. All children can sort
and count the blue and white tiles, but the teacher
can ask questions that push beyond, for example:

Build your own design out of white and blue tiles.
How many blue tiles and white tiles does your de-
sign have?
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Fig. 8. A graph of the blue tiles for each pool

As the problem moves up the grades in elementary
school, the questions asked push toward general-
ization. The children are challenged to find a way
to describe the relationship between the number
of blue tiles and the number of white tiles and the
position in the sequence of pool designs. The
ways to represent the change in the variables from
on: pool to the next also become more varied over
time. Verbal descriptions, tables, graphs, and sym-
bolic expressions are all legitimate ways to express
the relationships.
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Fig. 9. Putting the graphs on the same coordinate axis
helps to compare the two patterns.

Looking for
Algebraic Reasoning

Many situations in elementary school mathematics
can give teachers an opportunity to generalize and
represent mathematical ideas and processes. In
this article we offer a geometric setting that illus-
trates how mathematical ideas can be developed
from the study of problems and how algebra
emerges as a way to generalize and represent
these ideas. Many other settings situated in num-
ber, data, and measurement are fruitful sites for
developing algebraic reasoning. The following set
of questions can serve to organize a classroom dis-
cussion in a variety of settings. The wording and
choices of representations will vary depending on
the experiences of the students.

e What are the variables in this situation? What
quantities are changing?

e How are the variables related?

e As one variable increases, what happens to
the other variable?

e How can you represent this relationship
using words, concrete objects, pictures, ta-
bles, graphs, or symbols?

e How can you build connections among
representations?

e How can you use this relationship to predict
information about the variables?
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What Is Algebra in
Elementary School?

elementary school to generalizing problems ver-
bally and symbolically in fifth grade. Figure 1 lists
specific expectations for children in grades pre-
K-2 and 3-5. The following paragraphs outline
three classroom explorations that help illustrate
how these expectations are met in practice.

Card Patterns

First graders enjoy working with patterns. Their
curiosity and creativity are a good match for the
algebraic thinking fostered at this level. In this
exploration, the teacher created several decks of
cards, each with a different numeric pattern. Some
of the patterns were repeating (ABCABC), some
were growing (counting up by threes or down by
fives), and some were alternating (up two, down
five, up two, down five). The cards for one pattern
were placed in a row in front of the students with
only one card turned faceup. From that card, the
students made predictions about what they thought
the next number might be.

One pattern started with a 4 and a 6. The stu-
dents thought that the next value would be an 8
and were surprised when it was a 4. Once the stu-
dents saw that the first three numbers were 4, 6,
4, they predicted that the next value would be 6.
One student remarked that this pattern had to be
an AB pattern. In this instance, the students were
correct, but other possibilities existed. For exam-
ple, the pattern could have been 4, 6, 4, 8, 4, 6, 4,
8 (ABACABAC) or 4, 6, 4, 4, 6, 4, 4, 6, 4
(ABAABA). Students in primary grades must
learn to identify the start and end of the unit of a
pattern and be aware that they may need to see
many numbers before they can conclusively
determine a pattern.

Figures 2 and 3 show students analyzing a pat-
tern in which a 40 was first uncovered from the
middle of the sequence. When asked what number

TEACHING CHILDREN MATHEMATICS

Copyright © 2001 The National Council of Teachers of Mathematics, Inc. www.nctm.org. All rights reserved.
This material may not be copied or distributed electronically or in any other format without witten permission from NCTM.




Source :
Extrait et reproduction autorisés de Bay-Williams, J. M., décembre 2001, « What Is Algebra in Elementary School? » dans Teaching Children Mathematics, 8(4), p. 196-200. ©  2001 National Council of Teachers of Mathematics. Tous droits réservés.
[image: image26.png]Algebra expectations for students in grades pre-K-2 and 3-5

Algebra
STANDARD

Irstrmtionad progras from prokindergarten
abrossgh grwde 12 sbould enable sl students to

Understand patierns, relations, and
fimcions

Pre-K-2 . Grades3-5

Expectations
In prekindergarten through grade 2 o students should—

Expectations
In gracles 3-8 all students should—

+ s, chasalty, and order objwats by sive. numbar, and athor
proportios;

+ e, wrtuc, and make gercraizations sbout geometr and
TRETRNIC patterns;

= rocigis, descrb, wd anliod such as of
sounds and shapes or simple mmeri; palteens and irrslsse fom
Oner HEMINTABON 1 anather;

= anaiyze how both repeating and growing patiems are generted.

. sand anayzc patiems and furcions, usng words, tbles,
woed gragha.

Kepessent and anslyse mathematical
satwaticns and structres using algehraic
symbaly

. erent e puopsutian of ans, such as

comMUIAELY, S SpECAC Pumbers;

e concrete, pactarid, and kil repESENtatons 1o develop an
g of and

* donify uch proparies wy commutadivily, asscciathity, sod
disaributivty and uze them 1o compute with whoi fumbees;

» reperemen the i o & viridile & an unknown quantity usiog
ettor or o aymbok

» wxpoens mathematicsl reationships wsing squations.

Ulte mathematieal models v represent
and understand quantiative relationshijs

+ mocel wiustons thut avobe ihe acdisn and viitraction of whole
numbers, using objects, pictures, and symbok.

+ modsl peobism stuaticns with objocts and upe represernlions
smich 9 graphs, tabine, and aqualion 10 drim condluain.

Avalyze chanpe in various coneses

describe qubtalive chage, SUCH @5 3 SEIENTS Growing take;
it quantitative change, such as » studkert's griwes) twis
[ ———

* vestigute how & change in one varable relates 1o a change in »
second variable;

idualily und dascride stuztions with constant o varyig rates of

change and compam thirs,

From Principles and Standards for School Mathematics (NGTM 2000, p. 394); all rights reserved

would come next, the students offered many
responses.

Student 1. I think the next number is 50 because
it is counting by tens.

Student 2. I think it is 80; you know 40, 80, 120.

Student 3. 1 think it is 42—counting by twos.

Student 4. 1 think it is counting by elevens.

Teacher. Then what would the next number be?

Student 4. Umm, 51.

After the students shared their predictions, one
student flipped over the next card, which was a 30.
Most students thought that the next card would be
20, predicting that the pattern was counting down
by tens. One student said that she thought the next
card would be 40, stating that the cards followed
another ABAB pattern. The third number uncov-
ered was 20. Although the students agreed that the
pattern seemed to be counting down by tens, they
reported that other possibilities still existed and that
they did not have enough numbers to know for sure.

Another set of cards showed the pattern 18, 23,
28, 33, 38, 43, 48. The students identified the pat-
tern as +5. After the students had uncovered all the
cards, the teacher asked them to look for patterns in
the numbers. The students noted that the endings
alternated 8, 3, 8, 3, 8 and that the pattern for the
tens place was 2, 2, 3, 3, 4, 4, except for 18 because
13 was not on a card.

The algebra content in this exploration is found
in the students’ describing and extending numeric
patterns. Once the students identified the pattern

DECEMBER 2001

unit, they were able to predict what card was sev-
eral cards away without uncovering every card in
the sequence. They also described the repeating
and growing patterns that were generated. In addi-
tion, for simpler patterns, such as 1, 3, 5, 7,9 and
10, 20, 30, 40, 50, 60, the students analyzed pat-
terns in the numbers themselves.

Pattern-Block Patterning
In a combined fourth- and fifth-grade class, the stu-
dents spent two weeks studying growing patterns
with pattern blocks. In one of the early patterns,

First graders turning up a middle card in a battern

Photograph by Cindy Garwick;
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First graders further analyzing the pattern

Photograph by Cindy Garwick; all rights reserved

the first design had two parallelograms, the second
had four parallelograms, the third had six parallel-
ograms, and so on. The students created a table of
the number of parallelograms needed for each
design to continue the pattern. From the table, the
students studied patterns to predict the number of
pattern blocks that would be needed to build the
twentieth and thirtieth designs in the pattern. In the
end, the students were asked to describe the gen-
eral case and to record it symbolically. For these
examples, the students concluded that the general
pattern was to double the term to get the number of
parallelograms. The teacher showed that this gen-
eralization could be recorded in symbols as 2 X n.
On another day, the students looked at a pattern
that started with three triangles and grew by three
with each new design. The students generalized
that for this pattern, the number of pieces needed

A student records data from the hexagon pattern
in a table. .

Photograph by Jenny Bay-Williams; all rights reserved

was three times the design number; the class
recorded this idea symbolically as 3 x n. In reflect-
ing on the parallelogram and triangle patterns, the
students noticed that the starting number of pieces
was the same as the increment with each new
design and was also the multiplier for the variable
in the general case.

At the end of the week, the students were given
a new pattern that started with three hexagons.
Each subsequent term increased by two hexagons,
which were added to the right side to create a wall.
As a class, the students made a chart to record the
number of hexagons used each time (see fig. 4).

This pattern proved to be very difficult for the
students to generalize. They noted that for each
new design, they needed two more hexagons than
for the previous design. They also noted that the
table increased by two each time. These realiza-
tions allowed the students to predict the number of
hexagons needed for the next design in the
sequence but not to predict the number of hexagons
that would be needed for the twentieth, thirtieth, or
nth design. To make these generalizations, the stu-
dents had to discover the horizontal pattern in the
table by comparing the design number with the
number of hexagons needed. In groups, the stu-
dents discussed and tested various hypotheses (see
fig. 5). The resulting dialogue involved important
algebraic reasoning. At one table, the dialogue was
as follows:

Student 1. 1 think it will be times 3 because the
pattern starts with 3 and that’s how the others have
worked.

Student 2. I think it will be times 2 because it’s
going up by twos.

Student 3. It can’t be times 2 because the
answers are all odd; it has to be times 3.

Student 2. But times 3 doesn’t work. Look—if
you plug it in here [pointing to the third term], you
get 9, not 7, which is what it is.

After exploring further and building more
designs, the students came up with two generaliza-
tions that worked when they tested them. One stu-
dent explained that the pattern went as follows:
remove one hexagon from the first design, then
multiply by 2, then add the one hexagon back on in
the end. Several groups explained that the pattern
was to double the number of hexagons, then add 1.
These students wrote the pattern generalization as
2 x n + 1. One group recorded this generalization
as 1 + 2 x n, explaining that the first design had an
extra piece and that thereafter, the pattern grew by
two each time. One student, referring to the table,
explained that the total number of hexagons needed
was the design number plus the design number that
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was one ahead of it. With assistance from the
teacher, the class generated the symbolic notation
n+ (n+ 1) for that description.

This task required students to extend a geomet-
ric pattern, describe that pattern, generalize it, and
represent it geometrically. In addition, the students
represented the pattern by drawing it, recording it
in a table, describing it in words, and for many stu-
dents, writing the algebraic expression for the pat-
tern in symbols. Moving between representations
is important in making sense of patterns and func-
tions. Different students relied on different repre-
sentations to make sense of the pattern. The stu-
dents analyzed change in the context of
pattern-block designs. In doing so, they explored
how the change in one variable (the design num-
ber) related to another variable (the number of
hexagons needed). Students in grades 3-5 are also
expected to identify the commutative, associative,
and distributive properties. In the three expressions
generated above, 2n + 1, 1 + 2n, and n + (n + 1),
the students could see that each representation is
correct because each will generate the number of
hexagons needed to create the design. Asking stu-
dents to explain why these three expressions result
in the same answers encourages them to apply the
commutative and associative properties.

Creating and Analyzing
Color-Tile Patterns

In a fifth-grade class, the students were asked to
create their own designs with color tiles, record the
data in tables and graphs, and use that information
to determine the general rules for their designs.
These students had many previous experiences
with generalizing patterns that had been shown to
them, but creating their own patterns resulted in

DECEMBER 2001

new learning about what constitutes an algebraic
pattern. Most students’ first designs were so com-
plicated that they could not figure out what the pat-
tern might be or whether a pattern existed. In fur-
ther explorations, the students generated patterns
that grew by some constant rate.

Figure 6 shows two boys working on a pattern
in which each stack of tiles grew by one more than
the previous stack. In figure 7, the pattern grew in
an alternating fashion. The students recorded and
graphed both the step function, that is, the number
of new tiles needed for just one step, and the total
number of tiles needed. Developing symbolic
expressions for such formulas is difficult and
beyond these students’ abilities; however, the stu-
dents were able to describe the patterns of their
designs and to verbalize the generalizations. The
students were then askéd how many tiles they
would need to generate the tenth and twentieth
designs in the sequences and at what step they
would need more than 100 tiles for the total design.

As they had done with the hexagon task, these
students were analyzing geometric patterns and

These students analyze a pattern that they created and try

to generalize it.

making generalizations. They analyzed the patterns
in tables, graphs, and words. The students
described whether their patterns grew at constant
rates or varying rates. For example, in the pattern
illustrated in figure 6, the boys debated whether
the rate of their pattern was varying or constant,
finally concluding that the rate was varying
because it varied by one with each step. The girl
who designed the pattern in figure 7 explained that
her rate was constant, even though it alternated. In
creating patterns, the students had to think more
deeply about what elements define a pattern.
Finally, the students used the information in their
tables or graphs to draw conclusions.

ms; all rights reserved
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Algebra in Pre-K-5

The three classroom episodes illustrate appropriate
tasks that develop important algebraic concepts for
elementary school students. These examples also
support three important themes that are related to
algebra and emphasized in Principles and Stan-
dards. These themes are summarized below.

Algebra is closely related to other content
strands. Algebra builds on students’ experiences
with number. In each of the examples discussed, the
students used their knowledge of skip counting and
whole-number operations to look for patterns. At
the same time, in revealing patterns that increase by
3 or 4, the algebraic explorations supported the stu-
dents’ understanding of number. Data analysis and
geometry are also important in developing alge-
braic thinking. Students can collect data and look at
patterns in the data. In the latter two explorations,
the students examined geometric patterns, analyzed
data in tables and graphs, and drew conclusions.

A second important theme related to algebra is
that patterns and functions should be represented in
a variety of ways. Words, tables, graphs, symbols,
and diagrams can all be used to analyze patterns and
functions. Incorporating several of these forms in
the same exploration enables students to see rela-
tionships among the representations and to move

Liz’s representations of her pattern in a drawing, a table, graphs,

and words
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flexibly among the different forms. In addition,
because certain representations make more sense to
some students, using different representations
enables more students to understand the ideas pre-
sented. In the color-tile task, some students were
able to see the patterns only by looking at the
designs that they had built. Other students used their
tables or looked at the linear growth in their graphs.

Finally, understanding the commutative, asso-
ciative, and distributive properties is important for
children. Although young children do not need to
know the names for these properties, they do need
to know that 4 + 7 has the same result as 7 + 4. Stu-
dents adding 8 + 5 might decompose the problem
to 8 + 2 + 3, then add 2 to 8 to get 10 and add 3
more. As illustrated in the hexagon problem, upper
elementary school students must know when one
expression is equal to another expression. Note that
the emphasis is not on identifying and illustrating
the properties but on knowing that these properties
hold true and developing the ability to apply them
flexibly when appropriate.

Educators must provide algebraic experiences
that are developmentally appropriate and grow in
sophistication for students in grades pre-K-5.
What algebraic concepts should be taught in the
elementary school years has not always been clear.
The classroom episodes described in this article are
intended to provide some insight into the nature of
algebra at various levels. More support can be
found in NCTM’s Navigating through Algebra
books (2001a, 2001b), resources that were devel-
oped to elaborate on the algebra strand in Princi-
ples and Standards and that offer lesson ideas,
assessments, and a thorough discussion of the
mathematics content.

Students in grades pre-K-5 enjoy studying pat-
terns and figuring out how they work, whether the
patterns are geometric or numeric, repeating or
growing. In these years, students learn how to
describe and model situations in their world. Alge-
braic experiences in elementary school are essen-
tial in building the thinking that is “an important
precursor to the more formalized study of algebra
in the middle and secondary schools” (NCTM
2000, p. 159).
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[image: image30.png]here is not enough time in the day to

teach all subjects!” This is the cry heard

in elementary schools all across the
country. With testing and accountability on every-
one’s mind, teachers are looking for creative ways
to teach all subjects. Literacy is on the top of the
list for testing, so it seems to get top priority. But
how can we make sure that mathematics, espe-
cially a crucial area such as algebraic thinking, is a
priority as well?

Integrating subject matter is one answer, and chil-
dren’s literature seems to be a great place to start.
Good, rich children’s books enhance reading and
communication as well as demonstrate how mathe-
matics is relevant in real-life situations. According to
Bay-Williams (2003), “Opening a mathematics les-
son with a children’s book sparks enthusiasm. . . .
Weeks after the activity, students will remember the
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June Soares, jnsbms@cubweb.com, is a third-grade teacher and faculty mathematics coach at
the Doran School in Fall River, Massachusetts. She has led teacher professional development
in early algebraic thinking at her school and district. Maria Blanton, mblanton@umassd.edu,
is associate professor of mathematics education at the University of Massachusetts Dart-
mouth. Her research interests are in the integration of algebraic thinking in the elementary
grades and sociocultural perspectives on the development of undergraduate students’ under-
standing of mathematical proof. James Kaput was a chancellor professor of mathematics at
the University of Massachusetts Dartmouth until his untimely death in July 2005. Although his
reputation was international in scope, he worked tirelessly on local fronts to bring educational
innovations to disadvantaged school districts.

story and its related investigation, and this will help
them to remember the mathematics.”

This article uses the classroom experiences of
one of the authors to explore how teachers can use
literature to integrate algebraic thinking and to
illustrate how these tasks, connected to literature,
can be integrated across the curriculum. We begin
with a brief discussion on algebraic thinking in the
elementary grades.

Principles and Standards for School Mathematics
(NCTM 2000) advocates the development of chil-
dren’s algebraic thinking through the study of
“relationships among quantities, including func-
tions, ways of representing mathematical relation-
ships, and the analysis of change” (p. 37). We
describe algebraic thinking as a process in which
students build general mathematical relationships
and express these relationships in increasingly
sophisticated ways. For example, students are
engaged in algebraic thinking when they describe
the number of handshakes in a group of any size, or
when they establish that the sum of any two odd
numbers is even, or when they develop and express
the idea that addition is commutative. Depending
on the student, these generalizations might be
expressed in words or symbols.
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[image: image31.png]Algebraic thinking can be supported through
the use of “algebrafied” tasks that help children
look for general relationships. We define these
tasks as ones that are transformed from arithmetic
problems to opportunities for conjecturing, gener-
alizing, and justifying mathematical relationships.
One simple way to do this is to vary a parameter in
a problem. For example, the Handshake problem is
typically posed as an arithmetic task with a single
numerical answer:

How many handshakes will there be if each per-
son in your group shakes the hand of every per-
son once?

Stated this way, students simply need to compute a
sum. But we can “algebrafy” this task by varying
the number of people in the group:

How many handshakes would there be if each per-
son in your group shakes the hand of every person
one time? What if one more person joins your
group? What if there were 20 people in the group?
‘What if there were 100 people? How did you get
your solution? How do you know it works?

The numbers used in the problem are chosen
specifically so that students will not (or cannot)

solve the problem arithmetically and, instead, must
think about the number of handshakes for any
number of people in the group. By varying the
number of handshakes and using large values for a
parameter, a simple arithmetic task is transformed
into one that involves algebraic thinking.

Although other ways exist for students to think
algebraically (e.g., generalizing about properties
such as commutativity of addition), the type of
algebrafying approach we describe here offers a
simple way for teachers to algebrafy their existing
arithmetic curriculum. The next step is to incorpo-
rate these problems across other subject areas.

As a result of both professional development in
algebraic thinking and the demands placed on my
instructional time by my school’s literacy program,
I began looking for ways to integrate algebraic
thinking with literacy and other subject areas in my
third-grade classroom. Shortly after giving my class
the Algebrafied Handshake problem, I selected the
book How the Second Grade Got $8,205.50 to Visit
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the Statue of Liberty (Zimelman 1992) as a read-
aloud during a social studies unit on immigration.
Using the story line in Zimelman’s book, I adapted
a problem from “All Lines Are Busy!” (Florence
2000) to create a new task, the Telephone problem:

The second graders at the Jefferson School have
raised money to visit the Statue of Liberty. Thir-
teen friends are planning to go. They are very
excited about the trip and worried that they might
forget something! On the night before the trip,
they call one another to double-check what they
need to bring. Each friend talks to every other
friend once. How many phone calls are made?

I then “algebrafied” this problem by varying the
number of friends in the group, asking how many
calls would be made if 100 friends were planning
to go to the Statue of Liberty. Using a large num-
ber such as 100 required children to think about
patterns and structure in the number of phone calls.
No child would try to solve this arithmetically!

I asked students to think about the Algebrafied
Telephone problem individually, then in small
groups. The small groups gave them the chance to
hear alternative solutions, reach conclusions, and
make conjectures with their peers. Sharon soon
announced to the class, “It was just like the [Alge-
brafied] Handshake problem!” As I had hoped,
some of the students were beginning to see mathe-
matical connections in the two problems. They
realized they could find the total number of phone
calls (like the total number of handshakes) from a

number sentence in which the numbers from one to
one less than the number of people in the group
were added (e.g., for 6 people, the number of
phone calls would be 5 +4 +3 +2 + 1).

My interest in integrating algebraic thinking did
not stop with literacy and social studies. In science
class, we were working on a unit about sound in
which students were required to make and use
paper-cup telephones. Students were able to use
their telephones to act out the process of making
phone calls before the field trip, as the Algebrafied
Telephone problem stipulates. Talking to one
another on the telephones they made during sci-
ence class helped clarify for students that it took
two people to make one phone call. In conjunction
with this, I read Telephone (Gambrell 1996) to my
students. It is a Russian poem about animals mak-
ing unusual phone calls. The Algebrafied Tele-
phone problem, integrated with How the Second
Grade Got $8,205.50 to Visit the Statue of Liberty
and Telephone in the context of units on immigra-
tion and sound, turned out to be a novel way to
make connections across mathematics, science, lit-
eracy, and social studies.

I have found that algebraic thinking is not limited
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[image: image33.png]to school subjects; it can also be connected to stu-
dents’ everyday lives. For example, one student
came to school, excited about a wedding that she
had attended over the weekend, and told us how
she had to dance with her relatives. Without think-
ing, I asked her how many dances she had. Another
student said, “This sounds like the [Algebrafied]
Telephone problem!” I asked the student why it did
and then recorded on chart paper everyone’s ideas
about how we could design a new problem similar
to the Algebrafied Handshake and Telephone prob-
lems. As a class, we revised our thoughts and wrote
the following Algebrafied Dance problem:

The third graders at the school were going to
have a school dance. They wanted to be sure
that each person would have the chance to dance
one time with every other person. How many
dances would there be if there were 10 people at
the dance? What about 50 people?

After creating this task, I decided to read Snap-
shots from the Wedding (Soto 1997) to students. We
discussed the fun that people have at weddings;
then students solved the Algebrafied Dance prob-
lem. To track the number of dances, some drew
diagrams of dancing pairs, some used students’ ini-
tials to make a record, and some acted out the
dance. (I later played a music recording so that the
class could dance just as our problem stated. This
helped provide a visual context for making sense of
the mathematics.) As with the other tasks, some
students were able to generalize that the total num-
ber of dances would be “the sum of the numbers
from one up to one less than the number of people
in the group.” A formula for the sum is quadratic,
n(n — 1)/2 for n people, and could be difficult for
third-grade students to find. But it is also important
for elementary-grades children to develop general-
izations that use everyday language, as my students
did. As it turned out, the Algebrafied Dance prob-
lem and Snapshots from the Wedding gave me an
interesting way to connect mathematics and litera-
ture to students’ everyday lives.

Regardless of which subject you use to introduce
the kinds of tasks described here, looking for ways
to extend students’ mathematical thinking is impor-
tant. Ultimately, a goal of algebraic thinking is for

students to become more sophisticated in how they
understand and express mathematical generaliza-
tions. This can be difficult for tasks such as the
Algebrafied Dance problem because the relation-
ship between the number of students and the total
number of dances is quadratic. But young children
can think in surprisingly sophisticated ways about
simple linear relationships. An example of this is
the Algebrafied Table problem:

Andrew is setting up rectangular tables for a
birthday party. He knows that 4 people can sit at
a table. When he puts two of these tables
together end to end, he can seat 6 people. How
many people can Andrew seat if he puts three
tables together end to end? Four tables? Five
tables? 100 tables? N tables?

Spaghetti and Meatballs for All (Burns 1997)
can be used as a read-aloud to motivate the Alge-
brafied Table problem. In this book, Mrs. Com-
fort invites 32 people to a family reunion and
adjoins tables in order for more people to sit
together. Although the book introduces students
to perimeter and area, it could also be used to
bring in algebraic thinking with a problem such
as the Algebrafied Table problem, which asks
students to think about the number of people who
could be seated for any number of rectangular
tables joined together.

Teaching Children Mathematics / December 2005/January 2006

3
e
5
2
&
]
£

Photograph by D. Conf:

231




[image: image34.png]A one-table configuration for Andrew’s
party

Students’ record of the number of people
for different numbers of tables

To solve the Algebrafied Table problem, stu-
dents used Unifix cubes to build a rectangular
table that would seat four people. I then drew a
model on the board (see fig. 1) and students
recorded it on paper. They could see right away
that four people would fit at the table. I asked
them to think about how many people could sit at
two tables pushed together. Without thinking,
they called out, “Eight,” so I asked them to build
a two-table configuration with cubes and draw it
on paper. When they did this, some students
noticed that if they just pushed the tables
together, two people would get “squished.” So we
tried putting the desks in the classroom together
in order to act out the process. Students could see
that the number of people who could be seated at
two adjoined rectangular tables was actually six.

To keep track of the data, students constructed
the t-chart in figure 2 on the board as part of our
whole-class discussion. We continued this for up
to six tables.

T asked if anyone could think of a number sen-
tence that we could use to show how many people

could sit at n tables. Although I often use large
numbers such as 100 as a way to prompt algebraic
thinking, I have found that third-grade students
can also become fairly fluent at using letters to
represent varying or unknown quantities and love
to do so. What followed was very interesting. Stu-
dents had become quite good at using t-charts to
look for patterns in the data going down a column
(e.g., the number of people). But they needed to
find a relationship across the columns, between
the number of tables and the number of people.

I asked students to look at the rows in the
t-chart and tell me what they noticed. How did
the number of people change as the number of
tables increased? In what way could they
describe how the number of people related to the
number of tables? Students found that every time
a table was added, one person was at each end.
This caused them to look at the t-chart differ-
ently. Some noticed from patterns in the t-chart
data that multiplying the number of tables by 2
and adding 2 would lead to the number of people
that could be seated. Some discovered the same
relationship by working with pattern blocks;
when the rectangular tables were joined, the two
“people” (squares) on the end remained, but the
people between the adjoined tables disappeared.

We then had to find a way to represent this.
Students suggested that the number of people
that could be seated at n tables would be the num-
ber of tables, n, times 2, plus 2. They wrote,
“(2 x n) + 2 = the number of people.” This was
significant because students described, in a fairly
sophisticated, symbolic way, a general relation-
ship between two quantities. Finally, at the end of
this activity, I used Spaghetti and Meatballs for
All (Burns 1997) to prompt students to write in
their journals about an occasion in which their
family had some type of reunion.

The episodes and illustrations from the author’s
class suggest ways that algebraic thinking can be
incorporated into daily instructional activities
across the curriculum. Besides the obvious benefit
of developing children’s algebraic thinking skills,
this process can also strengthen children’s mathe-
matical understanding through the development of
their arithmetic skills and the mathematical con-
nections they can make to other subjects.
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Teachers sometimes feel they must make a choice
between helping students learn basic arithmetic skills
and presenting more challenging mathematics prob-
lems. One of the advantages of algebrafied arith-
metic tasks is that they embed arithmetic computa-
tions into meaningful mathematics, giving students
an engaging way to practice these skills. Moreover,
solving the types of algebraic thinking tasks
described here can help students think about under-
lying arithmetic principles. For example, children in
the author’s class were able to explore the notion of
“counting on” when faced with the dilemma of re-
computing existing sums each time a parameter, such
as the number of friends in a group, changed. By
sharing these insights with the class, students helped
others develop their arithmetic understanding.

Establishing connections
between subject areas

Another advantage of integrating mathematics with
literacy, science, social studies, and other subject
areas is that it draws on teachers’ strengths and inter-
ests in these other subjects and helps them and their
students think contextually about the mathematics.
As this article points out, children’s literature can
suggest rich mathematical opportunities for alge-
braic thinking or provide contexts for mathematical
tasks that the teacher already has in mind. Students’
readability of a book does not always have to be a
deciding factor for the classroom teacher; the goal is
for the book to motivate students in solving a math-
ematical task. The primary objectives of the mathe-
matics curriculum should be that students make con-
nections to everyday life, become lifelong learners
of mathematics, and appreciate mathematics and are
able to see it in all the subjects they study. Figure 3
depicts how the author integrated algebrafied tasks
across multiple subject areas. It illustrates the use of
literature in various contexts (language arts, social
studies, and science) to create a richer, more con-
nected mathematical experience in which students
develop algebraic reasoning skills.

Mathematics is everywhere. The teacher’s chal-
lenge is to build a habit of mind whereby students
naturally think and see mathematically, especially
outside of “math class.”

To algebrafy across the curriculum, you might start

with a book that you and your students enjoy. Try to
identify any opportunities for mathematical tasks.
Are there quantities that can be added together,
such as the number of eyes and legs a dog has? Are
there architectural features that can be used as a
context for thinking about geometric shapes and
properties? Are there objects (e.g., cookies, money)
that can be shared among a group?

Once you have decided on a task, is there any
way to extend or generalize the situation? For
example, are there quantities that change over time
or that can be varied, such as the number of shirts
a person has, the number of students going on a
field trip, or the number of animals riding a bus? In
other words, can you transform the task to build
opportunities for thinking about what is going on
in general? How many total handshakes would
there be for a group of friends of any amount? How
many phone calls would be made by a group of stu-
dents of any amount? How many outfits are possi-
ble given any amount of shirts (and a fixed number
of pants)? How many eyes and legs would there be
for a group of dogs of any amount? Also, as you
begin to use these types of tasks, choose values so
that the parameter is large enough (e.g., 100 chil-
dren in a group) to require students to think about
a generalization about the data rather than try to
solve the problem arithmetically.
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Connecting algebraic thinking tasks across the curriculum

The “Algebrafied” Handshake Problem (Blanton and Kaput 2003)

Unit on Sound: How the Second Grade Got
$8,205.50 to Visit the Statue
of Liberty (Zimelman 1992)

Make and use telephones

out of paper cups Telephone (Gambrell 1996)

Mathematics

The Telephone Problem
(Arithmetic)

The Algebrafied
Telephone Problem

Social Studies

Immigration and connections
to the Statue of Liberty

Connecting to Students’ Everyday Experiences

Student describes dancing at wedding.
Class constructs the
“Algebrafied” Dance Problem.
Snapshots from the Wedding (Soto 1997)
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Algebraic Thinking in Literature: Hints for Getting Started

Stories about Animals ‘
Find the total number of legs, eyes, tails, and so forth, for a group of animals of any size by varying the number of animals in the
group.

Stories about Money
Vary an item’s price to explore relationships between price and amount owed:

| want to buy a T-shirt that costs $14. | have $8 saved already. How much more money do | need to earn to buy the shirt? Sup-
pose the T-shirt costs $15. Write a number sentence that describes how much more money | need to buy the item. If P stands
for the price of any T-shirt | want to buy, write a number sentence using P that describes how much more money | need to buy
the T-shirt. (Blanton and Kaput 2003)

Stories about Geometry
Look for rectangles (or other shapes) as well as illustrations of embedded rectangles (see below). Systematically counting the number
of rectangles embedded in a larger rectangle, for increasingly larger rectangles, can lead to interesting patterns and relationships.

A large rectangle with embedded rectangles:

Finally, in designing and implementing your
algebrafied task, make sure you focus on justifica-
tion and argumentation. Questions such as the fol-
lowing are important because they help facilitate
the kind of classroom discourse that builds stu-
dents’ algebraic thinking skills:

« How did you arrive at your pattern?
« What representations did you use?
« How do you know your pattern will always work?

Conversely, such skills are not likely developed
through individual worksheet activities. These tasks
and how they are used in instruction can prompt chil-
dren to communicate with one another in order to
share, develop, and expand the way they think math-
ematically. To get started, figure 4 offers some hints
for integrating algebraic thinking into literature.

Just about any picture book can be used to
develop a mathematical concept. The more our stu-
dents observe us connecting mathematics to literacy,
science, social studies, and other subjects, the more
they will realize that mathematics is not an isolated
subject. As you read a picture book, look for the
mathematics in the book, whether the context is an
animal, a family, a clock, money, a geometric shape,

or a fractional part of some item. Then think about
how you might algebrafy a particular task. Over
time, you will start to build your own connections
across your elementary curriculum.
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